Optimization and prediction of AZ91D stellite-6 coated magnesium alloy using Box Behnken design and hybrid deep belief network

材料科学 涂层 Box-Behnken设计 合金 镁合金 多孔性 钨铬钴合金 电磁屏蔽 响应面法 复合材料 冶金 计算机科学 机器学习
作者
Karthik Mathivanan,D. Thirumalaikumarasamy,Ashokkumar Mohankumar,S. Deepak,Mathanbabu Mariappan
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:15: 2953-2969 被引量:21
标识
DOI:10.1016/j.jmrt.2021.09.069
摘要

Nowadays, the utilization of magnesium (Mg) alloys is increased due to its various beneficial characters such as better thermal conductivity, minimum density, less weight, superior strength, good dimensional, stability nature, etc. They are used in both mechanical as well as electrical industries. In the same way, it is used in electronic industries for its perfect capability of damping and electromagnetic shielding offers noise reduction. Although, they have a lot of advantages some disadvantages surround them. Mg alloy easily corroded when used at certain wet zones and the poor wear behavior may suppress the service life of Mg alloys. To overcome such issues, a surface coating approach is to be carried out on Mg alloy AZ91D using stellite powder to assist with NiCr pre-coating. The coated Mg alloys are studied for their porosity (%), corrosion rate (mm/year), and wear loss (mg). The experimental study is planned by Response Surface Methodology (RSM) using Box Behnken Design (BBD). The outcomes are validated by Hybrid Deep Belief Network (DBN) based Mayfly optimization approach in MATLAB version 2020a. The minimum porosity, corrosion rate and wear loss obtained for the coated AZ91D Mg alloy is 0.588%, 1.302 mm/year, and 0.719 mg. Besides, the hybrid DBN-based predicted outcomes are closer to the experimental outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
datasheep完成签到,获得积分10
1秒前
一只草履虫完成签到,获得积分10
1秒前
cc发布了新的文献求助20
1秒前
欢呼的凌兰完成签到,获得积分10
2秒前
希望天下0贩的0应助WDD采纳,获得10
3秒前
4秒前
闪闪的蓝血完成签到,获得积分10
5秒前
劲秉应助迪丽热巴采纳,获得10
5秒前
fugu0完成签到,获得积分10
7秒前
奋斗的萝发布了新的文献求助20
8秒前
8秒前
10秒前
10秒前
Damunv完成签到,获得积分10
11秒前
11秒前
12秒前
科研通AI2S应助一个采纳,获得10
12秒前
13秒前
刘十三完成签到,获得积分10
13秒前
13秒前
1234354346完成签到 ,获得积分10
14秒前
吴书维发布了新的文献求助10
14秒前
wick06发布了新的文献求助10
16秒前
脑洞疼应助666采纳,获得10
16秒前
WDD发布了新的文献求助10
17秒前
pluto应助pbw9123采纳,获得10
17秒前
舒适亦凝发布了新的文献求助10
17秒前
Akim应助Hou采纳,获得10
18秒前
上官若男应助mo采纳,获得10
18秒前
Ava应助jessica采纳,获得10
20秒前
prl666完成签到,获得积分10
22秒前
善学以致用应助奋斗的萝采纳,获得10
23秒前
24秒前
yoke完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
ding应助舒适亦凝采纳,获得10
26秒前
吴书维完成签到,获得积分10
27秒前
mo完成签到,获得积分20
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470052
求助须知:如何正确求助?哪些是违规求助? 3063269
关于积分的说明 9082164
捐赠科研通 2753583
什么是DOI,文献DOI怎么找? 1510900
邀请新用户注册赠送积分活动 698158
科研通“疑难数据库(出版商)”最低求助积分说明 698064