Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning

计算机科学 人工智能 分割 模式识别(心理学) 深度学习 无监督学习 机器学习 稳健性(进化) 生物化学 基因 化学
作者
Jin Hong,Simon C.H. Yu,Weitian Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:121: 108729-108729 被引量:54
标识
DOI:10.1016/j.asoc.2022.108729
摘要

Liver segmentation on images acquired using computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in clinical management of liver diseases. Compared to MRI, CT images of liver are more abundant and readily available. However, MRI can provide richer quantitative information of the liver compared to CT. Thus, it is desirable to achieve unsupervised domain adaptation for transferring the learned knowledge from the source domain containing labeled CT images to the target domain containing unlabeled MR images. In this work, we report a novel unsupervised domain adaptation framework for cross-modality liver segmentation via joint adversarial learning and self-learning. We propose joint semantic-aware and shape-entropy-aware adversarial learning with post-situ identification manner to implicitly align the distribution of task-related features extracted from the target domain with those from the source domain. In proposed framework, a network is trained with the above two adversarial losses in an unsupervised manner, and then a mean completer of pseudo-label generation is employed to produce pseudo-labels to train the next network (desired model). Additionally, semantic-aware adversarial learning and two self-learning methods, including pixel-adaptive mask refinement and student-to-partner learning, are proposed to train the desired model. To improve the robustness of the desired model, a low-signal augmentation function is proposed to transform MRI images as the input of the desired model to handle hard samples. Using the public datasets, our experiments demonstrated the proposed unsupervised domain adaptation framework reached four supervised learning methods with a Dice score 0.912 ± 0.037 (mean ± standard deviation).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
1秒前
2秒前
夏儿发布了新的文献求助10
2秒前
青年才俊发布了新的文献求助10
2秒前
3秒前
我行我素发布了新的文献求助10
3秒前
北城南笙发布了新的文献求助10
4秒前
4秒前
4秒前
等风发布了新的文献求助10
5秒前
虚拟刺客完成签到 ,获得积分10
6秒前
悦耳亦云完成签到 ,获得积分10
6秒前
吼吼哈哈完成签到,获得积分10
7秒前
风中天宇发布了新的文献求助10
7秒前
SSNN发布了新的文献求助10
7秒前
superbanggg发布了新的文献求助10
7秒前
苏幕遮发布了新的文献求助10
7秒前
BigKang发布了新的文献求助10
7秒前
科研通AI6应助拼搏耷采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
wjy发布了新的文献求助10
8秒前
Hello应助小鲤鱼本鱼采纳,获得10
8秒前
wait发布了新的文献求助10
8秒前
科研通AI6应助yl采纳,获得10
9秒前
9秒前
冯习完成签到,获得积分10
10秒前
10秒前
11秒前
脑洞疼应助隐形的星月采纳,获得10
11秒前
111完成签到,获得积分20
11秒前
孙小花发布了新的文献求助10
12秒前
李爱国应助dakjdia采纳,获得10
12秒前
杨怀托发布了新的文献求助10
12秒前
星辰大海应助wzw采纳,获得10
13秒前
绝不从良发布了新的文献求助10
14秒前
hgsgeospan完成签到,获得积分10
14秒前
BigKang完成签到,获得积分20
15秒前
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547895
求助须知:如何正确求助?哪些是违规求助? 4633315
关于积分的说明 14630622
捐赠科研通 4574970
什么是DOI,文献DOI怎么找? 2508753
邀请新用户注册赠送积分活动 1485041
关于科研通互助平台的介绍 1456069