Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning

计算机科学 人工智能 分割 模式识别(心理学) 深度学习 无监督学习 机器学习 稳健性(进化) 生物化学 化学 基因
作者
Jin Hong,Simon C.H. Yu,Weitian Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:121: 108729-108729 被引量:54
标识
DOI:10.1016/j.asoc.2022.108729
摘要

Liver segmentation on images acquired using computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in clinical management of liver diseases. Compared to MRI, CT images of liver are more abundant and readily available. However, MRI can provide richer quantitative information of the liver compared to CT. Thus, it is desirable to achieve unsupervised domain adaptation for transferring the learned knowledge from the source domain containing labeled CT images to the target domain containing unlabeled MR images. In this work, we report a novel unsupervised domain adaptation framework for cross-modality liver segmentation via joint adversarial learning and self-learning. We propose joint semantic-aware and shape-entropy-aware adversarial learning with post-situ identification manner to implicitly align the distribution of task-related features extracted from the target domain with those from the source domain. In proposed framework, a network is trained with the above two adversarial losses in an unsupervised manner, and then a mean completer of pseudo-label generation is employed to produce pseudo-labels to train the next network (desired model). Additionally, semantic-aware adversarial learning and two self-learning methods, including pixel-adaptive mask refinement and student-to-partner learning, are proposed to train the desired model. To improve the robustness of the desired model, a low-signal augmentation function is proposed to transform MRI images as the input of the desired model to handle hard samples. Using the public datasets, our experiments demonstrated the proposed unsupervised domain adaptation framework reached four supervised learning methods with a Dice score 0.912 ± 0.037 (mean ± standard deviation).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
foster发布了新的文献求助30
2秒前
赘婿应助xiaohaonumber2采纳,获得10
3秒前
3秒前
laohu2发布了新的文献求助10
5秒前
星希应助削菠萝采纳,获得10
6秒前
不配.应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得30
7秒前
Orange应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
布鲁爱思发布了新的文献求助20
7秒前
8秒前
学渣本渣发布了新的文献求助10
10秒前
11秒前
大模型应助laohu2采纳,获得10
12秒前
12秒前
在水一方应助知了采纳,获得10
13秒前
gxf发布了新的文献求助10
13秒前
15秒前
勤恳友灵完成签到 ,获得积分10
16秒前
颜陌发布了新的文献求助10
16秒前
18秒前
Ava应助berg采纳,获得10
18秒前
无忧翻书关注了科研通微信公众号
21秒前
21秒前
22秒前
23秒前
23秒前
物化新丁完成签到,获得积分10
25秒前
TH完成签到,获得积分20
27秒前
部落格123完成签到,获得积分10
27秒前
liuz53发布了新的文献求助10
27秒前
27秒前
28秒前
传奇3应助佳佳采纳,获得10
28秒前
28秒前
拾忆完成签到,获得积分10
29秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145276
求助须知:如何正确求助?哪些是违规求助? 2796719
关于积分的说明 7820904
捐赠科研通 2452997
什么是DOI,文献DOI怎么找? 1305336
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464