Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning

计算机科学 人工智能 分割 模式识别(心理学) 深度学习 无监督学习 机器学习 稳健性(进化) 生物化学 基因 化学
作者
Jin Hong,Simon C.H. Yu,Weitian Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:121: 108729-108729 被引量:54
标识
DOI:10.1016/j.asoc.2022.108729
摘要

Liver segmentation on images acquired using computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in clinical management of liver diseases. Compared to MRI, CT images of liver are more abundant and readily available. However, MRI can provide richer quantitative information of the liver compared to CT. Thus, it is desirable to achieve unsupervised domain adaptation for transferring the learned knowledge from the source domain containing labeled CT images to the target domain containing unlabeled MR images. In this work, we report a novel unsupervised domain adaptation framework for cross-modality liver segmentation via joint adversarial learning and self-learning. We propose joint semantic-aware and shape-entropy-aware adversarial learning with post-situ identification manner to implicitly align the distribution of task-related features extracted from the target domain with those from the source domain. In proposed framework, a network is trained with the above two adversarial losses in an unsupervised manner, and then a mean completer of pseudo-label generation is employed to produce pseudo-labels to train the next network (desired model). Additionally, semantic-aware adversarial learning and two self-learning methods, including pixel-adaptive mask refinement and student-to-partner learning, are proposed to train the desired model. To improve the robustness of the desired model, a low-signal augmentation function is proposed to transform MRI images as the input of the desired model to handle hard samples. Using the public datasets, our experiments demonstrated the proposed unsupervised domain adaptation framework reached four supervised learning methods with a Dice score 0.912 ± 0.037 (mean ± standard deviation).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助刘长绪采纳,获得10
刚刚
科目三应助Ash采纳,获得10
刚刚
蔡莹完成签到 ,获得积分10
刚刚
田様应助晴天采纳,获得10
2秒前
2秒前
俏皮的海云完成签到 ,获得积分10
4秒前
4秒前
4秒前
小毛发布了新的文献求助10
5秒前
赘婿应助小胖胖采纳,获得10
5秒前
花坂结衣发布了新的文献求助10
5秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
周凡淇发布了新的文献求助10
8秒前
无花果应助NX采纳,获得10
8秒前
BowieHuang应助mice33采纳,获得10
8秒前
lili发布了新的文献求助10
8秒前
西西完成签到 ,获得积分10
9秒前
JamesPei应助烂漫新儿采纳,获得10
9秒前
9秒前
10秒前
10秒前
xyg发布了新的文献求助10
11秒前
不是风动完成签到 ,获得积分10
11秒前
一一应助YEM采纳,获得10
13秒前
汉堡包应助明理的凡霜采纳,获得10
15秒前
15秒前
15秒前
柳行天完成签到 ,获得积分10
15秒前
1122846发布了新的文献求助10
15秒前
Laray完成签到 ,获得积分20
16秒前
yijiubingshi发布了新的文献求助10
17秒前
NX完成签到,获得积分20
17秒前
18秒前
wanci应助迷人雪碧采纳,获得10
18秒前
浮游应助忧郁的灵枫采纳,获得10
18秒前
19秒前
SIDEsss发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627161
求助须知:如何正确求助?哪些是违规求助? 4713090
关于积分的说明 14961386
捐赠科研通 4783800
什么是DOI,文献DOI怎么找? 2554728
邀请新用户注册赠送积分活动 1516296
关于科研通互助平台的介绍 1476641