Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning

计算机科学 人工智能 分割 模式识别(心理学) 深度学习 无监督学习 机器学习 稳健性(进化) 生物化学 基因 化学
作者
Jin Hong,Simon C.H. Yu,Weitian Chen
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:121: 108729-108729 被引量:54
标识
DOI:10.1016/j.asoc.2022.108729
摘要

Liver segmentation on images acquired using computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in clinical management of liver diseases. Compared to MRI, CT images of liver are more abundant and readily available. However, MRI can provide richer quantitative information of the liver compared to CT. Thus, it is desirable to achieve unsupervised domain adaptation for transferring the learned knowledge from the source domain containing labeled CT images to the target domain containing unlabeled MR images. In this work, we report a novel unsupervised domain adaptation framework for cross-modality liver segmentation via joint adversarial learning and self-learning. We propose joint semantic-aware and shape-entropy-aware adversarial learning with post-situ identification manner to implicitly align the distribution of task-related features extracted from the target domain with those from the source domain. In proposed framework, a network is trained with the above two adversarial losses in an unsupervised manner, and then a mean completer of pseudo-label generation is employed to produce pseudo-labels to train the next network (desired model). Additionally, semantic-aware adversarial learning and two self-learning methods, including pixel-adaptive mask refinement and student-to-partner learning, are proposed to train the desired model. To improve the robustness of the desired model, a low-signal augmentation function is proposed to transform MRI images as the input of the desired model to handle hard samples. Using the public datasets, our experiments demonstrated the proposed unsupervised domain adaptation framework reached four supervised learning methods with a Dice score 0.912 ± 0.037 (mean ± standard deviation).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
4秒前
gym完成签到,获得积分10
4秒前
Efei发布了新的文献求助10
5秒前
Lucas应助jixia采纳,获得10
5秒前
宓鲂发布了新的文献求助10
6秒前
6秒前
kk发布了新的文献求助10
8秒前
Link发布了新的文献求助10
9秒前
个性傲蕾关注了科研通微信公众号
10秒前
11秒前
12秒前
Fury发布了新的文献求助20
12秒前
13秒前
追忆发布了新的文献求助10
14秒前
14秒前
kk发布了新的文献求助10
15秒前
乖猫要努力应助超帅彩虹采纳,获得10
16秒前
乖猫要努力应助超帅彩虹采纳,获得10
16秒前
Steven发布了新的文献求助10
17秒前
cyh完成签到,获得积分20
18秒前
jixia发布了新的文献求助10
18秒前
哈牛发布了新的文献求助10
18秒前
QI完成签到 ,获得积分10
18秒前
个性傲蕾关注了科研通微信公众号
18秒前
老衲法号嘿嘿嘿完成签到,获得积分10
19秒前
负责的调料汁完成签到,获得积分10
19秒前
huohuo发布了新的文献求助10
20秒前
笑笑的妙松完成签到,获得积分10
20秒前
Tiffany完成签到 ,获得积分10
21秒前
FFFFcom完成签到,获得积分10
21秒前
xliang233完成签到 ,获得积分10
22秒前
大个应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得30
23秒前
风清扬应助科研通管家采纳,获得10
23秒前
916应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502715
关于积分的说明 11109873
捐赠科研通 3233579
什么是DOI,文献DOI怎么找? 1787443
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152