Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning

计算机科学 人工智能 分割 模式识别(心理学) 深度学习 无监督学习 机器学习 稳健性(进化) 生物化学 基因 化学
作者
Jin Hong,Simon C.H. Yu,Weitian Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:121: 108729-108729 被引量:54
标识
DOI:10.1016/j.asoc.2022.108729
摘要

Liver segmentation on images acquired using computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in clinical management of liver diseases. Compared to MRI, CT images of liver are more abundant and readily available. However, MRI can provide richer quantitative information of the liver compared to CT. Thus, it is desirable to achieve unsupervised domain adaptation for transferring the learned knowledge from the source domain containing labeled CT images to the target domain containing unlabeled MR images. In this work, we report a novel unsupervised domain adaptation framework for cross-modality liver segmentation via joint adversarial learning and self-learning. We propose joint semantic-aware and shape-entropy-aware adversarial learning with post-situ identification manner to implicitly align the distribution of task-related features extracted from the target domain with those from the source domain. In proposed framework, a network is trained with the above two adversarial losses in an unsupervised manner, and then a mean completer of pseudo-label generation is employed to produce pseudo-labels to train the next network (desired model). Additionally, semantic-aware adversarial learning and two self-learning methods, including pixel-adaptive mask refinement and student-to-partner learning, are proposed to train the desired model. To improve the robustness of the desired model, a low-signal augmentation function is proposed to transform MRI images as the input of the desired model to handle hard samples. Using the public datasets, our experiments demonstrated the proposed unsupervised domain adaptation framework reached four supervised learning methods with a Dice score 0.912 ± 0.037 (mean ± standard deviation).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香菜味钠片完成签到,获得积分10
刚刚
得且完成签到,获得积分10
1秒前
1秒前
pipe完成签到,获得积分10
1秒前
1秒前
扶风完成签到,获得积分10
1秒前
禹无极完成签到,获得积分10
2秒前
NexusExplorer应助PDIF-CN2采纳,获得10
2秒前
guoguo完成签到,获得积分10
2秒前
魔幻茈完成签到,获得积分10
2秒前
Akim应助yaoyinlin采纳,获得10
2秒前
Perry发布了新的文献求助10
3秒前
3秒前
失眠忆曼完成签到,获得积分10
4秒前
4秒前
超帅鸭子完成签到,获得积分20
4秒前
511完成签到 ,获得积分10
4秒前
zhuhan发布了新的文献求助10
5秒前
希望天下0贩的0应助cc采纳,获得10
5秒前
5秒前
高高高发布了新的文献求助10
6秒前
青柠发布了新的文献求助20
6秒前
6秒前
6秒前
真实的采白完成签到 ,获得积分10
7秒前
lkc完成签到,获得积分10
8秒前
疯狂的慕灵完成签到 ,获得积分10
8秒前
mumu发布了新的文献求助30
8秒前
英俊的铭应助文静的铅笔采纳,获得10
8秒前
8秒前
9秒前
踏实的白羊完成签到,获得积分10
9秒前
星渊应助工作还是工作采纳,获得10
9秒前
Terfi完成签到,获得积分10
10秒前
顾矜应助一条小鱼采纳,获得10
10秒前
Orange应助weihua93采纳,获得10
11秒前
姒吟发布了新的文献求助10
11秒前
Anoxra完成签到 ,获得积分10
11秒前
czs完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006