清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning

计算机科学 人工智能 分割 模式识别(心理学) 深度学习 无监督学习 机器学习 稳健性(进化) 生物化学 基因 化学
作者
Jin Hong,Simon C.H. Yu,Weitian Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:121: 108729-108729 被引量:54
标识
DOI:10.1016/j.asoc.2022.108729
摘要

Liver segmentation on images acquired using computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in clinical management of liver diseases. Compared to MRI, CT images of liver are more abundant and readily available. However, MRI can provide richer quantitative information of the liver compared to CT. Thus, it is desirable to achieve unsupervised domain adaptation for transferring the learned knowledge from the source domain containing labeled CT images to the target domain containing unlabeled MR images. In this work, we report a novel unsupervised domain adaptation framework for cross-modality liver segmentation via joint adversarial learning and self-learning. We propose joint semantic-aware and shape-entropy-aware adversarial learning with post-situ identification manner to implicitly align the distribution of task-related features extracted from the target domain with those from the source domain. In proposed framework, a network is trained with the above two adversarial losses in an unsupervised manner, and then a mean completer of pseudo-label generation is employed to produce pseudo-labels to train the next network (desired model). Additionally, semantic-aware adversarial learning and two self-learning methods, including pixel-adaptive mask refinement and student-to-partner learning, are proposed to train the desired model. To improve the robustness of the desired model, a low-signal augmentation function is proposed to transform MRI images as the input of the desired model to handle hard samples. Using the public datasets, our experiments demonstrated the proposed unsupervised domain adaptation framework reached four supervised learning methods with a Dice score 0.912 ± 0.037 (mean ± standard deviation).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
貔貅完成签到 ,获得积分10
12秒前
12秒前
文章多多发布了新的文献求助10
12秒前
两个榴莲完成签到,获得积分0
15秒前
25秒前
xingzai101完成签到,获得积分10
33秒前
40秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
43秒前
49秒前
55秒前
1分钟前
1分钟前
1分钟前
1分钟前
天天快乐应助坚定的剑心采纳,获得10
1分钟前
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
doublenine18发布了新的文献求助50
1分钟前
1分钟前
2分钟前
斯文败类应助顾灵毓采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
顾灵毓发布了新的文献求助10
2分钟前
可爱的函函应助顾灵毓采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
顾灵毓发布了新的文献求助10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
李健应助顾灵毓采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
顾灵毓发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639753
求助须知:如何正确求助?哪些是违规求助? 4750316
关于积分的说明 15007305
捐赠科研通 4797968
什么是DOI,文献DOI怎么找? 2564061
邀请新用户注册赠送积分活动 1522938
关于科研通互助平台的介绍 1482591