已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Biologically informed deep neural network for prostate cancer discovery

可解释性 前列腺癌 计算机科学 癌症 机器学习 人工智能 深度学习 疾病 计算生物学 医学 生物信息学 生物 内科学
作者
Haitham Elmarakeby,Justin H. Hwang,Rand Arafeh,Jett Crowdis,Sydney Gang,David Liu,Saud H. AlDubayan,Keyan Salari,Steven Kregel,Camden Richter,Taylor E. Arnoff,Jihye Park,William C. Hahn,Eliezer M. Van Allen
出处
期刊:Nature [Springer Nature]
卷期号:598 (7880): 348-352 被引量:288
标识
DOI:10.1038/s41586-021-03922-4
摘要

Abstract The determination of molecular features that mediate clinically aggressive phenotypes in prostate cancer remains a major biological and clinical challenge 1,2 . Recent advances in interpretability of machine learning models as applied to biomedical problems may enable discovery and prediction in clinical cancer genomics 3–5 . Here we developed P-NET—a biologically informed deep learning model—to stratify patients with prostate cancer by treatment-resistance state and evaluate molecular drivers of treatment resistance for therapeutic targeting through complete model interpretability. We demonstrate that P-NET can predict cancer state using molecular data with a performance that is superior to other modelling approaches. Moreover, the biological interpretability within P-NET revealed established and novel molecularly altered candidates, such as MDM4 and FGFR1 , which were implicated in predicting advanced disease and validated in vitro. Broadly, biologically informed fully interpretable neural networks enable preclinical discovery and clinical prediction in prostate cancer and may have general applicability across cancer types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dongyi发布了新的文献求助200
2秒前
深情安青应助知弈否采纳,获得10
5秒前
JD完成签到 ,获得积分10
5秒前
浮游应助LJY采纳,获得10
7秒前
tanrui发布了新的文献求助20
8秒前
8秒前
三岁完成签到 ,获得积分10
9秒前
汉堡包应助dongyi采纳,获得10
12秒前
怕黑山柏发布了新的文献求助10
13秒前
兜兜发布了新的文献求助30
13秒前
Hello应助tanrui采纳,获得10
17秒前
liuling完成签到,获得积分10
19秒前
rongrongrong完成签到,获得积分10
20秒前
小白果果完成签到,获得积分10
21秒前
22秒前
心灵美鑫完成签到 ,获得积分10
23秒前
24秒前
26秒前
27秒前
Linos应助伯克利芙蓉王采纳,获得10
28秒前
28秒前
lige完成签到 ,获得积分10
30秒前
30秒前
田田发布了新的文献求助10
31秒前
linsen发布了新的文献求助10
32秒前
yzizz发布了新的文献求助10
37秒前
FashionBoy应助田田采纳,获得10
38秒前
39秒前
权翼完成签到,获得积分10
42秒前
sookie完成签到 ,获得积分10
43秒前
44秒前
46秒前
霸气的夏蓉完成签到,获得积分20
46秒前
47秒前
晒太阳啦发布了新的文献求助60
48秒前
今后应助酚醛树脂采纳,获得10
49秒前
故城完成签到 ,获得积分10
49秒前
dirk完成签到 ,获得积分10
50秒前
tanrui发布了新的文献求助10
52秒前
十月木樨发布了新的文献求助10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542985
求助须知:如何正确求助?哪些是违规求助? 4629125
关于积分的说明 14610877
捐赠科研通 4570403
什么是DOI,文献DOI怎么找? 2505738
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454361