亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Biologically informed deep neural network for prostate cancer discovery

可解释性 前列腺癌 计算机科学 癌症 机器学习 人工智能 深度学习 疾病 计算生物学 医学 生物信息学 生物 内科学
作者
Haitham Elmarakeby,Justin H. Hwang,Rand Arafeh,Jett Crowdis,Sydney Gang,David Liu,Saud H. AlDubayan,Keyan Salari,Steven Kregel,Camden Richter,Taylor E. Arnoff,Jihye Park,William C. Hahn,Eliezer M. Van Allen
出处
期刊:Nature [Springer Nature]
卷期号:598 (7880): 348-352 被引量:288
标识
DOI:10.1038/s41586-021-03922-4
摘要

Abstract The determination of molecular features that mediate clinically aggressive phenotypes in prostate cancer remains a major biological and clinical challenge 1,2 . Recent advances in interpretability of machine learning models as applied to biomedical problems may enable discovery and prediction in clinical cancer genomics 3–5 . Here we developed P-NET—a biologically informed deep learning model—to stratify patients with prostate cancer by treatment-resistance state and evaluate molecular drivers of treatment resistance for therapeutic targeting through complete model interpretability. We demonstrate that P-NET can predict cancer state using molecular data with a performance that is superior to other modelling approaches. Moreover, the biological interpretability within P-NET revealed established and novel molecularly altered candidates, such as MDM4 and FGFR1 , which were implicated in predicting advanced disease and validated in vitro. Broadly, biologically informed fully interpretable neural networks enable preclinical discovery and clinical prediction in prostate cancer and may have general applicability across cancer types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
21秒前
鹏虫虫发布了新的文献求助10
27秒前
27秒前
41秒前
Ava应助科研通管家采纳,获得10
52秒前
田様应助科研通管家采纳,获得10
52秒前
深情安青应助科研通管家采纳,获得10
52秒前
情怀应助科研通管家采纳,获得10
52秒前
55秒前
1分钟前
1分钟前
1分钟前
海绵发布了新的文献求助10
1分钟前
1分钟前
1分钟前
海绵完成签到,获得积分20
1分钟前
科研通AI6应助海绵采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
小橘子吃傻子完成签到,获得积分10
2分钟前
zxin完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
ZGavin应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
犹豫幻丝完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
ZGavin应助科研通管家采纳,获得10
4分钟前
5分钟前
朴素千亦完成签到 ,获得积分10
5分钟前
5分钟前
mickaqi完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454983
求助须知:如何正确求助?哪些是违规求助? 4562242
关于积分的说明 14284984
捐赠科研通 4486135
什么是DOI,文献DOI怎么找? 2457255
邀请新用户注册赠送积分活动 1447868
关于科研通互助平台的介绍 1423090