Dynamic coherent diffractive imaging with a physics-driven untrained learning method

衍射 深度学习 约束(计算机辅助设计) 物理 计算机科学 鬼影成像 人工神经网络 过程(计算) 算法 对象(语法) 光学 相位恢复 自适应光学 波前 迭代重建 图像质量 全息术 人工智能 数学 操作系统 几何学
作者
Yang Dongyu,Junhao Zhang,Ye Tao,Wenjin Lv,Shun Lu,Hao Chen,Wenhui Xu,Yishi Shi
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:29 (20): 31426-31426 被引量:7
标识
DOI:10.1364/oe.433507
摘要

Reconstruction of a complex field from one single diffraction measurement remains a challenging task among the community of coherent diffraction imaging (CDI). Conventional iterative algorithms are time-consuming and struggle to converge to a feasible solution because of the inherent ambiguities. Recently, deep-learning-based methods have shown considerable success in computational imaging, but they require large amounts of training data that in many cases are difficult to obtain. Here, we introduce a physics-driven untrained learning method, termed Deep CDI, which addresses the above problem and can image a dynamic process with high confidence and fast reconstruction. Without any labeled data for pretraining, the Deep CDI can reconstruct a complex-valued object from a single diffraction pattern by combining a conventional artificial neural network with a real-world physical imaging model. To our knowledge, we are the first to demonstrate that the support region constraint, which is widely used in the iteration-algorithm-based method, can be utilized for loss calculation. The loss calculated from support constraint and free propagation constraint are summed up to optimize the network’s weights. As a proof of principle, numerical simulations and optical experiments on a static sample are carried out to demonstrate the feasibility of our method. We then continuously collect 3600 diffraction patterns and demonstrate that our method can predict the dynamic process with an average reconstruction speed of 228 frames per second (FPS) using only a fraction of the diffraction data to train the weights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助火锅采纳,获得10
1秒前
酷波er应助Yyy采纳,获得10
1秒前
1秒前
Jemmy发布了新的文献求助10
2秒前
3秒前
大个应助研友_LkBYo8采纳,获得10
3秒前
楼宸发布了新的文献求助10
3秒前
凪白发布了新的文献求助10
5秒前
5秒前
晓晓发布了新的文献求助10
6秒前
7秒前
李健应助1瞬间采纳,获得10
7秒前
8秒前
8秒前
8秒前
李健的小迷弟应助吉吉采纳,获得10
9秒前
9秒前
10秒前
李健的小迷弟应助楼宸采纳,获得10
10秒前
zgy1106完成签到,获得积分10
10秒前
酷波er应助感动城采纳,获得10
10秒前
921完成签到,获得积分10
11秒前
三木发布了新的文献求助10
11秒前
张泽奇完成签到,获得积分10
12秒前
Maestro_S发布了新的文献求助10
13秒前
lzyempire发布了新的文献求助10
13秒前
徐扬发布了新的文献求助10
13秒前
Yyy发布了新的文献求助10
14秒前
ChemGuo完成签到,获得积分10
15秒前
周洋发布了新的文献求助10
15秒前
罗婉婷发布了新的文献求助10
16秒前
16秒前
Jemmy完成签到,获得积分10
16秒前
李健的小迷弟应助晓晓采纳,获得10
16秒前
17秒前
JamesPei应助研友_VZG64n采纳,获得10
17秒前
18秒前
18秒前
19秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788