Anchoring Ag(I) into Nitro-Functionalized Metal–Organic Frameworks: Effectively Catalyzing Cycloaddition of CO2 with Propargylic Alcohols under Mild Conditions
Carboxylative cyclization of propargylic alcohols with CO2 is significant in synthetic chemistry, but harsh conditions are often needed according to reported results. Herein, a new stable nitro-functionalized metal–organic framework (MOF) of {[Co3(L)2(bpy)4(H2O)2]·DMF·H2O·bpy}n (1) was fabricated through the solvothermal reaction, which exhibited excellent stability in acid and basic solutions. Owing to the porous structure, unsaturated metal sites, and uncoordinated 4,4′-bpy ligands, 1 can serve as an excellent platform for catalytic applications. Hence, Ag(I) ions were incorporated in 1 through a postsynthetic method, and the as-synthesized Ag-1 catalyst with low metal loading (0.64 mol %) displayed excellent catalytic performance in the chemical fixation of CO2 with alkynols under room temperature and atmospheric pressure. The results of 1H NMR analyses further confirmed that Ag-1 can efficiently activate hydroxyl groups and promote the reaction. Moreover, the turnover frequency (TOF) of the Ag-1 catalyst can reach 262 h–1 in a short period of time, which is a high TOF value among the state-of-the-art MOF-based catalysts for catalyzing cycloaddition of CO2 with propargylic alcohols.