已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards Efficient Learning Using Double-Layered Federation Based on Traffic Density for Internet of Vehicles

计算机科学 互联网 人机交互 多媒体 万维网 人工智能
作者
Xiaolin Hu,Guanghui Wang,Lei Jiang,Shuang Ding,Xin He
出处
期刊:Lecture Notes in Computer Science 卷期号:: 287-298 被引量:5
标识
DOI:10.1007/978-3-030-87571-8_25
摘要

It is an important topic to research on the federal-learning based smart services to achieve data privacy preservation in the Internet of Vehicles field. However, model training in the vehicles is still confronting the challenge of low learning efficiency when applying the federal-learning concept into the scenario of dense road. To address the above issue, this paper presents a novel technique to enhance the learning efficiency based on traffic density for the Internet of vehicles. First, a double-layered federation architecture is built through coordinating multiple roadside units. The streams of traffic are divided into different regions, where the devices inside each region are federated for down-layer learning. The roadside units corresponding to each region layer are federated for up-layer learning. Second, based on the double-layered federation architecture, an efficient federal-learning algorithm is invented, where the computational overheads of dense traffic are decreased and the data privacy is still preserved during the model training process. Finally, the simulations are conducted using the real-world dataset from the Microscopic vehicular mobility trace of Europarc roundabout, Creteil, France. The simulation results show that the proposed efficient federal-learning algorithm can improve the learning performance and preserve data privacy in the scenario of intensive traffic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ni发布了新的文献求助10
刚刚
hh完成签到 ,获得积分10
1秒前
CR7发布了新的文献求助10
2秒前
4秒前
5秒前
陶醉的蜜蜂完成签到 ,获得积分10
6秒前
大树完成签到 ,获得积分10
7秒前
棠真完成签到 ,获得积分0
7秒前
Ni完成签到 ,获得积分20
8秒前
U87完成签到,获得积分10
9秒前
111完成签到 ,获得积分10
9秒前
CR7完成签到,获得积分10
9秒前
ROC发布了新的文献求助10
10秒前
郑zheng完成签到 ,获得积分10
12秒前
GingerF应助科研通管家采纳,获得50
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得20
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
Owen应助牛哥采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
shanmao完成签到,获得积分10
14秒前
FashionBoy应助wise111采纳,获得10
16秒前
Sharif318完成签到,获得积分10
18秒前
爆米花应助Dragonfln采纳,获得10
19秒前
19秒前
21秒前
Jenny712发布了新的文献求助10
21秒前
23秒前
3D完成签到 ,获得积分10
26秒前
oldblack发布了新的文献求助10
27秒前
调皮的灰狼完成签到,获得积分10
28秒前
28秒前
29秒前
Dragonfln完成签到,获得积分10
29秒前
爱撒娇的妙竹完成签到,获得积分10
29秒前
wise111发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356201
求助须知:如何正确求助?哪些是违规求助? 4488058
关于积分的说明 13971574
捐赠科研通 4388833
什么是DOI,文献DOI怎么找? 2411257
邀请新用户注册赠送积分活动 1403802
关于科研通互助平台的介绍 1377590