Towards Efficient Learning Using Double-Layered Federation Based on Traffic Density for Internet of Vehicles

计算机科学 互联网 人机交互 多媒体 万维网 人工智能
作者
Xiaolin Hu,Guanghui Wang,Lei Jiang,Shuang Ding,Xin He
出处
期刊:Lecture Notes in Computer Science 卷期号:: 287-298 被引量:5
标识
DOI:10.1007/978-3-030-87571-8_25
摘要

It is an important topic to research on the federal-learning based smart services to achieve data privacy preservation in the Internet of Vehicles field. However, model training in the vehicles is still confronting the challenge of low learning efficiency when applying the federal-learning concept into the scenario of dense road. To address the above issue, this paper presents a novel technique to enhance the learning efficiency based on traffic density for the Internet of vehicles. First, a double-layered federation architecture is built through coordinating multiple roadside units. The streams of traffic are divided into different regions, where the devices inside each region are federated for down-layer learning. The roadside units corresponding to each region layer are federated for up-layer learning. Second, based on the double-layered federation architecture, an efficient federal-learning algorithm is invented, where the computational overheads of dense traffic are decreased and the data privacy is still preserved during the model training process. Finally, the simulations are conducted using the real-world dataset from the Microscopic vehicular mobility trace of Europarc roundabout, Creteil, France. The simulation results show that the proposed efficient federal-learning algorithm can improve the learning performance and preserve data privacy in the scenario of intensive traffic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bystanding发布了新的文献求助10
刚刚
AAA下水工王哥完成签到,获得积分10
刚刚
小二郎应助研友_V8Qmr8采纳,获得10
1秒前
2秒前
你比我笨发布了新的文献求助10
2秒前
六七七完成签到,获得积分10
2秒前
wwh完成签到,获得积分10
3秒前
3秒前
朴实雨竹完成签到,获得积分10
3秒前
淡淡夏柳发布了新的文献求助10
3秒前
LI发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
nykal完成签到 ,获得积分10
5秒前
7秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
TeelaGe完成签到 ,获得积分10
9秒前
gao发布了新的文献求助10
9秒前
Betty完成签到 ,获得积分10
9秒前
小牛发布了新的文献求助10
10秒前
10秒前
留胡子的立辉完成签到,获得积分10
11秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129758
求助须知:如何正确求助?哪些是违规求助? 2780521
关于积分的说明 7748895
捐赠科研通 2435880
什么是DOI,文献DOI怎么找? 1294339
科研通“疑难数据库(出版商)”最低求助积分说明 623673
版权声明 600570