已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards Efficient Learning Using Double-Layered Federation Based on Traffic Density for Internet of Vehicles

计算机科学 互联网 人机交互 多媒体 万维网 人工智能
作者
Xiaolin Hu,Guanghui Wang,Lei Jiang,Shuang Ding,Xin He
出处
期刊:Lecture Notes in Computer Science 卷期号:: 287-298 被引量:5
标识
DOI:10.1007/978-3-030-87571-8_25
摘要

It is an important topic to research on the federal-learning based smart services to achieve data privacy preservation in the Internet of Vehicles field. However, model training in the vehicles is still confronting the challenge of low learning efficiency when applying the federal-learning concept into the scenario of dense road. To address the above issue, this paper presents a novel technique to enhance the learning efficiency based on traffic density for the Internet of vehicles. First, a double-layered federation architecture is built through coordinating multiple roadside units. The streams of traffic are divided into different regions, where the devices inside each region are federated for down-layer learning. The roadside units corresponding to each region layer are federated for up-layer learning. Second, based on the double-layered federation architecture, an efficient federal-learning algorithm is invented, where the computational overheads of dense traffic are decreased and the data privacy is still preserved during the model training process. Finally, the simulations are conducted using the real-world dataset from the Microscopic vehicular mobility trace of Europarc roundabout, Creteil, France. The simulation results show that the proposed efficient federal-learning algorithm can improve the learning performance and preserve data privacy in the scenario of intensive traffic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黄捷豹完成签到,获得积分20
1秒前
嗝嗝发布了新的文献求助10
1秒前
科研通AI5应助ceploup采纳,获得10
2秒前
3秒前
徐沛发布了新的文献求助10
4秒前
叶笑笑完成签到,获得积分10
4秒前
duanduan123发布了新的文献求助10
5秒前
5秒前
谷安完成签到,获得积分10
5秒前
自觉飞莲发布了新的文献求助10
7秒前
旺仔同学完成签到,获得积分10
7秒前
华仔应助haiqi采纳,获得10
8秒前
HenryWang发布了新的文献求助30
10秒前
10秒前
11秒前
11秒前
yangsj完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
qq完成签到,获得积分10
15秒前
斯文败类应助感性的俊驰采纳,获得10
17秒前
18秒前
19秒前
20秒前
自觉飞莲完成签到,获得积分10
21秒前
22秒前
小胡完成签到,获得积分10
22秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
脑洞疼应助科研通管家采纳,获得10
24秒前
爆米花应助拼搏秋采纳,获得30
24秒前
酷波er应助科研通管家采纳,获得20
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
tanlinxin应助科研通管家采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
25秒前
打打应助科研通管家采纳,获得10
25秒前
领导范儿应助机灵画板采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5006157
求助须知:如何正确求助?哪些是违规求助? 4249604
关于积分的说明 13241522
捐赠科研通 4049428
什么是DOI,文献DOI怎么找? 2215328
邀请新用户注册赠送积分活动 1225275
关于科研通互助平台的介绍 1145839