亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards Efficient Learning Using Double-Layered Federation Based on Traffic Density for Internet of Vehicles

计算机科学 互联网 人机交互 多媒体 万维网 人工智能
作者
Xiaolin Hu,Guanghui Wang,Lei Jiang,Shuang Ding,Xin He
出处
期刊:Lecture Notes in Computer Science 卷期号:: 287-298 被引量:5
标识
DOI:10.1007/978-3-030-87571-8_25
摘要

It is an important topic to research on the federal-learning based smart services to achieve data privacy preservation in the Internet of Vehicles field. However, model training in the vehicles is still confronting the challenge of low learning efficiency when applying the federal-learning concept into the scenario of dense road. To address the above issue, this paper presents a novel technique to enhance the learning efficiency based on traffic density for the Internet of vehicles. First, a double-layered federation architecture is built through coordinating multiple roadside units. The streams of traffic are divided into different regions, where the devices inside each region are federated for down-layer learning. The roadside units corresponding to each region layer are federated for up-layer learning. Second, based on the double-layered federation architecture, an efficient federal-learning algorithm is invented, where the computational overheads of dense traffic are decreased and the data privacy is still preserved during the model training process. Finally, the simulations are conducted using the real-world dataset from the Microscopic vehicular mobility trace of Europarc roundabout, Creteil, France. The simulation results show that the proposed efficient federal-learning algorithm can improve the learning performance and preserve data privacy in the scenario of intensive traffic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
21秒前
烛夜黎发布了新的文献求助10
36秒前
顾矜应助烛夜黎采纳,获得10
46秒前
1分钟前
1分钟前
科研通AI6应助lulu采纳,获得10
1分钟前
科研通AI6应助lulu采纳,获得10
1分钟前
科研通AI6应助lulu采纳,获得10
1分钟前
科研通AI6应助lulu采纳,获得10
1分钟前
啦啦啦啦啦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
ALpha发布了新的文献求助10
1分钟前
2分钟前
真实的瑾瑜完成签到 ,获得积分10
2分钟前
2分钟前
ALpha完成签到,获得积分10
2分钟前
2分钟前
科研小白菜完成签到,获得积分10
2分钟前
GL发布了新的文献求助10
2分钟前
2分钟前
2分钟前
聪明怜阳发布了新的文献求助10
2分钟前
orixero应助GL采纳,获得30
2分钟前
blenx完成签到,获得积分10
2分钟前
2分钟前
ZBQ发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
ying818k发布了新的文献求助10
3分钟前
3分钟前
lulu发布了新的文献求助10
3分钟前
3分钟前
3分钟前
lulu发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488538
求助须知:如何正确求助?哪些是违规求助? 4587379
关于积分的说明 14413773
捐赠科研通 4518750
什么是DOI,文献DOI怎么找? 2476038
邀请新用户注册赠送积分活动 1461532
关于科研通互助平台的介绍 1434442