An integrated mixed reality system for safety-aware human-robot collaboration using deep learning and digital twin generation

点云 计算机科学 计算机视觉 人工智能 偏移量(计算机科学) 深度学习 机器人 分割 增强现实 可视化 实时计算 程序设计语言
作者
Minseok Kim,Kyeong-Beom Park,Dong Hyeon Roh,Jae Yeol Lee,Mustafa Mohammed,Yalda Ghasemi,Heejin Jeong
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:73: 102258-102258 被引量:111
标识
DOI:10.1016/j.rcim.2021.102258
摘要

For human-robot collaboration (HRC), one of the most practical methods to ensure human safety with a vision-based system is establishing a minimum safe distance. This study proposes a novel integrated mixed reality (MR) system for safety-aware HRC using deep learning and digital twin generation. The proposed approach can accurately measure the minimum safe distance in real-time and provide MR-based task assistance to the human operator. The approach integrates MR with safety-related monitoring by tracking the shared workplace and providing user-centric visualization through smart MR glasses for safe and effective HRC. Two RGB-D sensors are used to reconstruct and track the working environment. One sensor scans one area of the physical environment through 3D point cloud data. The other also scans another area of the environment and tracks the user's 3D skeletal information. In addition, the two partially scanned environments are registered together by applying a fast global registration method to two sets of the 3D point cloud. Furthermore, deep learning-based instance segmentation is applied to the target object's 3D point cloud to increase the registration between the real robot and its virtual robot, the digital twin of the real robot. While only 3D point cloud data are widely used in previous studies, this study proposes a simple yet effective 3D offset-based safety distance calculation method based on the robot's digital twin and the human skeleton. The 3D offset-based method allows for real-time applicability without sacrificing the accuracy of safety distance calculation for HRI. In addition, two comparative evaluations were conducted to confirm the originality and advantage of the proposed MR-based HRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈宝宝完成签到,获得积分10
1秒前
彗星完成签到,获得积分10
2秒前
3秒前
li完成签到 ,获得积分10
4秒前
Niuma完成签到,获得积分10
6秒前
哎嘿应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
哎嘿应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
哎嘿应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
从容芮应助你好呀采纳,获得10
8秒前
早早入眠完成签到,获得积分10
11秒前
周舟舟完成签到,获得积分10
11秒前
自信的电灯胆完成签到,获得积分10
13秒前
chen7完成签到,获得积分10
15秒前
CipherSage应助文鸳采纳,获得10
19秒前
21秒前
万能图书馆应助111采纳,获得10
26秒前
27秒前
29秒前
后蹄儿完成签到,获得积分10
30秒前
30秒前
科研通AI2S应助Mia采纳,获得30
31秒前
zhangxueqing完成签到,获得积分10
32秒前
Yilion完成签到,获得积分10
32秒前
奎尼丁发布了新的文献求助10
35秒前
35秒前
默默发布了新的文献求助10
36秒前
36秒前
ZDZ发布了新的文献求助10
36秒前
yaocx完成签到,获得积分10
37秒前
37秒前
38秒前
Denmark发布了新的文献求助30
38秒前
WW完成签到,获得积分10
39秒前
zt发布了新的文献求助10
41秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155953
求助须知:如何正确求助?哪些是违规求助? 2807296
关于积分的说明 7872331
捐赠科研通 2465597
什么是DOI,文献DOI怎么找? 1312272
科研通“疑难数据库(出版商)”最低求助积分说明 630017
版权声明 601905