Geometry Auxiliary Salient Object Detection for Light Fields via Graph Neural Networks

光场 突出 人工智能 计算机科学 目标检测 判别式 领域(数学) 计算机视觉 水准点(测量) 可视化 模式识别(心理学) 特征提取 连贯性(哲学赌博策略) 图形 一致性(知识库) 人工神经网络 数学 理论计算机科学 统计 大地测量学 纯数学 地理
作者
Qiudan Zhang,Shiqi Wang,Xu Wang,Zhenhao Sun,Sam Kwong,Jianmin Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 7578-7592 被引量:16
标识
DOI:10.1109/tip.2021.3108018
摘要

Light field imaging, originated from the availability of light field capture technology, offers a wide range of applications in the field of computational vision. The capability of predicting salient objects of light fields remains technologically challenging due to its complicated geometry structure. In this paper, we propose a light field salient object detection approach that formulates the geometric coherence among multiple views of light fields as graphs, where the angular/central views represent the nodes and their relations compose the edges. The spatial and disparity correlations between multiple views are effectively explored through multi-scale graph neural networks, enabling the more comprehensive understanding of light field content and more representative and discriminative saliency features generation. Moreover, a multi-scale saliency feature consistency learning module is embedded to enhance the saliency features. Finally, an accurate salient object map is produced for the light field based upon the extracted features. In addition, we establish a new light field salient object detection dataset (CITYU-Lytro) that contains 817 light fields with diverse contents and their corresponding annotations, aiming to further promote the research on light field salient object detection. Quantitative and qualitative experiments demonstrate that the proposed method performs favorably compared with the state-of-the-art methods on the benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljh完成签到,获得积分10
刚刚
斜杠小猪完成签到,获得积分10
1秒前
小宋发布了新的文献求助30
1秒前
所所应助晶晶baobao采纳,获得20
1秒前
香蕉觅云应助咎星采纳,获得10
1秒前
华丽的落寞完成签到,获得积分10
1秒前
xuejunshuai完成签到,获得积分10
2秒前
帅气雪糕发布了新的文献求助10
2秒前
3秒前
打打应助王某采纳,获得30
4秒前
5秒前
初九和猫完成签到,获得积分10
6秒前
6秒前
细心薯片发布了新的文献求助80
6秒前
6秒前
7秒前
May应助搞怪网络采纳,获得20
8秒前
8秒前
范佳宁发布了新的文献求助10
8秒前
话落谁家完成签到,获得积分10
8秒前
大模型应助杨小黑采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
LEMONS应助科研通管家采纳,获得10
11秒前
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
科目三应助斜杠小猪采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得30
11秒前
852应助东郭雁梅采纳,获得30
11秒前
Hello应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352