Geometry Auxiliary Salient Object Detection for Light Fields via Graph Neural Networks

光场 突出 人工智能 计算机科学 目标检测 判别式 领域(数学) 计算机视觉 水准点(测量) 可视化 模式识别(心理学) 特征提取 连贯性(哲学赌博策略) 图形 一致性(知识库) 数学 理论计算机科学 统计 地理 纯数学 大地测量学
作者
Qiudan Zhang,Shiqi Wang,Xu Wang,Zhenhao Sun,Sam Kwong,Jianmin Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 7578-7592 被引量:14
标识
DOI:10.1109/tip.2021.3108018
摘要

Light field imaging, originated from the availability of light field capture technology, offers a wide range of applications in the field of computational vision. The capability of predicting salient objects of light fields remains technologically challenging due to its complicated geometry structure. In this paper, we propose a light field salient object detection approach that formulates the geometric coherence among multiple views of light fields as graphs, where the angular/central views represent the nodes and their relations compose the edges. The spatial and disparity correlations between multiple views are effectively explored through multi-scale graph neural networks, enabling the more comprehensive understanding of light field content and more representative and discriminative saliency features generation. Moreover, a multi-scale saliency feature consistency learning module is embedded to enhance the saliency features. Finally, an accurate salient object map is produced for the light field based upon the extracted features. In addition, we establish a new light field salient object detection dataset (CITYU-Lytro) that contains 817 light fields with diverse contents and their corresponding annotations, aiming to further promote the research on light field salient object detection. Quantitative and qualitative experiments demonstrate that the proposed method performs favorably compared with the state-of-the-art methods on the benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
光亮芷天完成签到,获得积分10
1秒前
1秒前
2秒前
粗犷的问夏完成签到,获得积分10
3秒前
知行合一完成签到 ,获得积分10
4秒前
4秒前
5秒前
李爱国应助晨曦采纳,获得10
6秒前
0128lun发布了新的文献求助10
6秒前
phd发布了新的文献求助10
7秒前
君无名完成签到 ,获得积分10
7秒前
经年发布了新的文献求助10
7秒前
QXR完成签到,获得积分10
8秒前
豆dou完成签到,获得积分10
8秒前
Dddd发布了新的文献求助10
8秒前
HCl完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
Hollen完成签到 ,获得积分10
12秒前
慕青应助学术蠕虫采纳,获得10
13秒前
13秒前
叶子发布了新的文献求助10
14秒前
orangel完成签到,获得积分10
15秒前
半壶月色半边天完成签到 ,获得积分10
16秒前
tmpstlml发布了新的文献求助10
16秒前
17秒前
17秒前
不安饼干完成签到 ,获得积分10
19秒前
活泼的飞鸟完成签到,获得积分10
19秒前
20秒前
xuyun发布了新的文献求助10
20秒前
20秒前
zzcres完成签到,获得积分10
22秒前
eeeee完成签到 ,获得积分10
22秒前
乐观德地完成签到,获得积分10
23秒前
大个应助yf_zhu采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808