Coupling Glucose‐Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production

制氢 析氧 电解 材料科学 氧化还原 电化学 分解水 电解质 阳极 电解水 化学工程 电极 催化作用 无机化学 化学 冶金 物理化学 光催化 工程类 生物化学 有机化学
作者
Yiqiong Zhang,Bo Zhou,Zengxi Wei,Zhou Wang,Dongdong Wang,Jing Tian,Tehua Wang,Shuangliang Zhao,Jilei Liu,Li Tao,Shuangyin Wang
出处
期刊:Advanced Materials [Wiley]
卷期号:33 (48) 被引量:188
标识
DOI:10.1002/adma.202104791
摘要

Abstract Water electrolysis is a sustainable technology for hydrogen production since this process can utilize the intermittent electricity generated by renewable energy such as solar, wind, and hydro. However, the large‐scale application of this process is restricted by the high electricity consumption due to the large potential gap ( > 1.23 V) between the anodic oxygen evolution reaction and the cathodic hydrogen evolution reaction (HER). Herein, a novel and efficient hydrogen production system is developed for coupling glucose‐assisted Cu(I)/Cu(II) redox with HER. The onset potential of the electrooxidation of Cu(I) to Cu(II) is as low as 0.7 V RHE (vs reversible hydrogen electrode). In situ Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and density functional theory calculation demonstrates that glucose in the electrolyte can reduce the Cu(II) into Cu(I) instantaneously via a thermocatalysis process, thus completing the cycle of Cu(I)/Cu(II) redox. The assembled electrolyzer only requires a voltage input of 0.92 V to achieve a current density of 100 mA cm −2 . Consequently, the electricity consumption for per cubic H 2 produced in the system is 2.2 kWh, only half of the value for conventional water electrolysis (4.5 kWh). This work provides a promising strategy for the low‐cost, efficient production of high‐purity H 2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sfw驳回了苏照杭应助
1秒前
dingdong发布了新的文献求助10
1秒前
别拖延了要毕业啊完成签到,获得积分10
2秒前
2秒前
2秒前
Rrr发布了新的文献求助10
2秒前
dingdong发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
yuan发布了新的文献求助10
5秒前
6秒前
cc完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
一一发布了新的文献求助10
7秒前
领导范儿应助Chridy采纳,获得10
7秒前
8秒前
凤凰山发布了新的文献求助10
8秒前
8秒前
孔雨珍发布了新的文献求助10
8秒前
淡定的思松应助通~采纳,获得10
9秒前
9秒前
明亮的八宝粥完成签到,获得积分10
9秒前
mayungui发布了新的文献求助10
9秒前
大型海狮完成签到,获得积分10
9秒前
搜集达人应助科研菜鸟采纳,获得10
10秒前
雨天有伞完成签到,获得积分10
10秒前
蕾子发布了新的文献求助10
10秒前
10秒前
zhui发布了新的文献求助10
10秒前
wanci应助jxcandice采纳,获得10
10秒前
factor发布了新的文献求助10
10秒前
11秒前
泊声发布了新的文献求助20
11秒前
narthon完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794