制氢
析氧
电解
材料科学
氧化还原
电化学
分解水
电解质
阳极
电解水
化学工程
氢
电极
催化作用
化学
冶金
物理化学
工程类
有机化学
光催化
生物化学
作者
Yiqiong Zhang,Bo Zhou,Zengxi Wei,Zhou Wang,Dongdong Wang,Jing Tian,Tehua Wang,Shuangliang Zhao,Lei Zhu,Li Tao,Shuangyin Wang
标识
DOI:10.1002/adma.202104791
摘要
Abstract Water electrolysis is a sustainable technology for hydrogen production since this process can utilize the intermittent electricity generated by renewable energy such as solar, wind, and hydro. However, the large‐scale application of this process is restricted by the high electricity consumption due to the large potential gap ( > 1.23 V) between the anodic oxygen evolution reaction and the cathodic hydrogen evolution reaction (HER). Herein, a novel and efficient hydrogen production system is developed for coupling glucose‐assisted Cu(I)/Cu(II) redox with HER. The onset potential of the electrooxidation of Cu(I) to Cu(II) is as low as 0.7 V RHE (vs reversible hydrogen electrode). In situ Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and density functional theory calculation demonstrates that glucose in the electrolyte can reduce the Cu(II) into Cu(I) instantaneously via a thermocatalysis process, thus completing the cycle of Cu(I)/Cu(II) redox. The assembled electrolyzer only requires a voltage input of 0.92 V to achieve a current density of 100 mA cm −2 . Consequently, the electricity consumption for per cubic H 2 produced in the system is 2.2 kWh, only half of the value for conventional water electrolysis (4.5 kWh). This work provides a promising strategy for the low‐cost, efficient production of high‐purity H 2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI