生物加工
3D生物打印
组织工程
材料科学
生物医学工程
挤压
纳米技术
再生医学
工程类
干细胞
细胞生物学
生物
复合材料
作者
Liming Lian,Cuiping Zhou,Guosheng Tang,Maobin Xie,Zixuan Wang,Zeyu Luo,Julia Olga Japo,Di Wang,Jianhua Zhou,Mian Wang,Wanlu Li,Sushila Maharjan,Marina Ruelas,Jie Guo,Xunwei Wu,Yu Shrike Zhang
标识
DOI:10.1002/adhm.202102411
摘要
Abstract The 3D bioprinting technologies have attracted increasing attention due to their flexibility in producing architecturally relevant tissue constructs. Here, a vertical embedded extrusion bioprinting strategy using uniaxial or coaxial nozzles is presented, which allows formation of vertical structures of homogeneous or heterogeneous properties. By adjusting the bioprinting parameters, the characteristics of the bioprinted vertical patterns can be precisely controlled. Using this strategy, two proof‐of‐concept applications in tissue biofabrication are demonstrated. Specifically, intestinal villi and hair follicles, two liner‐shaped tissues in the human body, are successfully generated with the vertical embedded bioprinting method, reconstructing some of their key structures as well as restoring partial functions in vitro. Caco‐2 cells in the bioprinted intestinal villus constructs proliferated and aggregated properly, also showing functional biomarker expressions such as ZO‐1 and villin. Moreover, preliminary hair follicle structures featuring keratinized human keratinocytes and spheroid‐shaped human dermal papilla cells are formed after vertical bioprinting and culturing. In summary, this vertical embedded extrusion bioprinting technique harnessing a uniaxial or coaxial format will likely bring further improvements in the reconstruction of certain human tissues and organs, especially those with a linear structure, potentially leading to wide utilities in tissue engineering, tissue model engineering, and drug discovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI