Dispersed foraging slime mould algorithm: Continuous and binary variants for global optimization and wrapper-based feature selection

计算机科学 选择(遗传算法) 算法 特征选择 二进制数 趋同(经济学) 特征(语言学) 形状记忆合金* 群体行为 威尔科克森符号秩检验 觅食 进化算法 人口 人工智能 数学优化 数学 统计 经济 人口学 社会学 哲学 算术 经济增长 语言学 生态学 生物 曼惠特尼U检验
作者
Jiao Hu,Wenyong Gui,Ali Asghar Heidari,Zhennao Cai,Guoxi Liang,Huiling Chen,Zhifang Pan
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:237: 107761-107761 被引量:175
标识
DOI:10.1016/j.knosys.2021.107761
摘要

The slime mould algorithm (SMA) is a logical swarm-based stochastic optimizer that is easy to understand and has a strong optimization capability. However, the SMA is not suitable for solving multimodal and hybrid functions. Therefore, in the present study, to enhance the SMA and maintain population diversity, a dispersed foraging SMA (DFSMA) with a dispersed foraging strategy is proposed. We conducted extensive experiments based on several functions in IEEE CEC2017. The DFSMA were compared with 11 other meta-heuristic algorithms (MAs), 10 advanced algorithms, and 3 recently proposed algorithms. Moreover, to conduct more systematic data analyses, the experimental results were further evaluated using the Wilcoxon signed-rank test. The DFSMA was shown to outperform other optimizers in terms of convergence speed and accuracy. In addition, the binary DFSMA (BDFSMA) was obtained using the transform function. The performance of the BDFSMA was evaluated on 12 datasets in the UCI repository. The experimental results reveal that the BDFSMA performs better than the original SMA, and that, compared with other optimization algorithms, it improves classification accuracy and reduces the number of selected features, demonstrating its practical engineering value in spatial search and feature selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
铁头哇完成签到,获得积分10
1秒前
111完成签到 ,获得积分10
1秒前
Ayna发布了新的文献求助10
1秒前
2秒前
张瑜发布了新的文献求助10
2秒前
复杂访冬完成签到,获得积分10
3秒前
Orange应助壹贰叁肆采纳,获得10
3秒前
令狐完成签到,获得积分10
4秒前
薛教授完成签到,获得积分10
4秒前
5秒前
无限的半青完成签到 ,获得积分10
5秒前
丘比特应助小羊烧鸡采纳,获得10
6秒前
无名应助科研通管家采纳,获得10
6秒前
宋呵呵应助科研通管家采纳,获得10
6秒前
Return应助科研通管家采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
HOAN应助科研通管家采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得30
8秒前
婵婵完成签到,获得积分10
8秒前
8秒前
8秒前
老福贵儿应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得30
8秒前
自由白凡完成签到,获得积分10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
9秒前
打打应助科研通管家采纳,获得10
9秒前
田様应助ninomae采纳,获得10
9秒前
9秒前
雍雍完成签到 ,获得积分10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978