Dispersed foraging slime mould algorithm: Continuous and binary variants for global optimization and wrapper-based feature selection

计算机科学 选择(遗传算法) 算法 特征选择 二进制数 趋同(经济学) 特征(语言学) 形状记忆合金* 群体行为 威尔科克森符号秩检验 觅食 进化算法 人口 人工智能 数学优化 数学 统计 经济 人口学 社会学 哲学 算术 经济增长 语言学 生态学 生物 曼惠特尼U检验
作者
Jiao Hu,Wenyong Gui,Ali Asghar Heidari,Zhennao Cai,Guoxi Liang,Huiling Chen,Zhifang Pan
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:237: 107761-107761 被引量:165
标识
DOI:10.1016/j.knosys.2021.107761
摘要

The slime mould algorithm (SMA) is a logical swarm-based stochastic optimizer that is easy to understand and has a strong optimization capability. However, the SMA is not suitable for solving multimodal and hybrid functions. Therefore, in the present study, to enhance the SMA and maintain population diversity, a dispersed foraging SMA (DFSMA) with a dispersed foraging strategy is proposed. We conducted extensive experiments based on several functions in IEEE CEC2017. The DFSMA were compared with 11 other meta-heuristic algorithms (MAs), 10 advanced algorithms, and 3 recently proposed algorithms. Moreover, to conduct more systematic data analyses, the experimental results were further evaluated using the Wilcoxon signed-rank test. The DFSMA was shown to outperform other optimizers in terms of convergence speed and accuracy. In addition, the binary DFSMA (BDFSMA) was obtained using the transform function. The performance of the BDFSMA was evaluated on 12 datasets in the UCI repository. The experimental results reveal that the BDFSMA performs better than the original SMA, and that, compared with other optimization algorithms, it improves classification accuracy and reduces the number of selected features, demonstrating its practical engineering value in spatial search and feature selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Liufgui应助do0采纳,获得10
4秒前
细腻灯泡发布了新的文献求助10
5秒前
顺利毕业发布了新的文献求助10
5秒前
6秒前
Jasper应助XiaodongWang采纳,获得10
7秒前
李健应助XiaodongWang采纳,获得10
7秒前
英俊的铭应助XiaodongWang采纳,获得10
7秒前
充电宝应助XiaodongWang采纳,获得10
7秒前
CipherSage应助XiaodongWang采纳,获得10
7秒前
8秒前
@A发布了新的文献求助10
8秒前
大兵发布了新的文献求助10
9秒前
9秒前
Luffa完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
Egoist完成签到,获得积分10
11秒前
11秒前
自然完成签到,获得积分20
12秒前
赘婿应助花雨落123采纳,获得10
12秒前
13秒前
13秒前
乐观的阿伟完成签到,获得积分10
14秒前
思维隋发布了新的文献求助10
15秒前
娟姐完成签到,获得积分10
15秒前
JamesPei应助大兵采纳,获得10
15秒前
wjs完成签到,获得积分10
16秒前
16秒前
wang发布了新的文献求助10
16秒前
最爱地瓜和虾滑完成签到 ,获得积分10
17秒前
小马甲应助小帅采纳,获得10
18秒前
科目三应助白河采纳,获得10
18秒前
19秒前
酷酷的笔记本完成签到,获得积分10
20秒前
舒服的寻琴完成签到,获得积分20
21秒前
pluto应助yizhi猫采纳,获得10
22秒前
沉辰发布了新的文献求助10
22秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075