Experimental analysis of early periprosthetic femoral fractures with uncemented straight hip stems

假体周围 股骨 尸体痉挛 断裂(地质) 植入 医学 股骨骨折 口腔正畸科 髋部骨折 下沉 关节置换术 外科 地质学 岩土工程 骨质疏松症 古生物学 构造盆地 内分泌学
作者
Michael Saemann,Martin Darowski,N.S. Hennicke,Rainer Bader,Manuela Sander,Daniel Kluess
出处
期刊:Clinical Biomechanics [Elsevier]
卷期号:91: 105543-105543 被引量:2
标识
DOI:10.1016/j.clinbiomech.2021.105543
摘要

The periprosthetic femoral fracture is one of the most severe complications after total hip arthroplasty and is associated with an increased mortality. The underlying causes and the patient- and implant-specific risk factors of periprosthetic femoral fractures remain insufficiently understood. The aim of this study was to gain a more profound understanding of the underlying fracture mechanisms and to provide experimental datasets for validation of computational models.Six cadaveric femurs were implanted with straight hip stems (Zweymueller design) and loaded until fracture reproducing the clinically relevant load cases stumbling and sideways fall. Displacements and the strain distribution on the surface of the femurs and implants, as well as the fracture load and implant subsidence were measured.For the load case stumbling the mean fracture load was 6743 N and two different mechanisms leading to fracture could be identified: high subsidence with low femoral bending and small subsidence with high femoral bending. For the load case sideways fall the mean fracture load was 1757 N and both tested femurs fractured due to a rotation of the hip stem around its own axis. The detailed datasets provided by this study can be used in future computational models.We demonstrated that the underlying fracture mechanisms of periprosthetic femoral fractures can be fundamentally different in the load case stumbling. The seating and exact position of the hip stem in the femur may correlate with implant subsidence and therefore lead to different types of fracture mechanisms resulting in different patient-specific fracture risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pinging应助讲你ing采纳,获得10
1秒前
小九完成签到 ,获得积分10
2秒前
华仔应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
ivy应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
喵酱完成签到,获得积分10
4秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
敬老院N号应助科研通管家采纳,获得30
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
Ava应助科研通管家采纳,获得30
4秒前
淡定的思松应助ww采纳,获得10
4秒前
cxh发布了新的文献求助10
5秒前
5秒前
winstar完成签到,获得积分10
5秒前
Amai发布了新的文献求助20
6秒前
langzi发布了新的文献求助10
6秒前
ZH的天方夜谭完成签到,获得积分20
6秒前
酷波er应助Rrr采纳,获得10
6秒前
Rhodomyrtus关注了科研通微信公众号
6秒前
wei完成签到,获得积分10
7秒前
7秒前
Qinruirui完成签到,获得积分10
7秒前
Owen应助xia采纳,获得10
7秒前
ddy完成签到,获得积分10
8秒前
zmy发布了新的文献求助10
8秒前
鳗鱼厉发布了新的文献求助10
8秒前
孤存完成签到 ,获得积分10
8秒前
zho关闭了zho文献求助
8秒前
9秒前
11秒前
aaashirz_完成签到,获得积分10
11秒前
科研通AI2S应助风中寄云采纳,获得10
11秒前
coffeecup1完成签到,获得积分10
13秒前
萌萌许完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794