材料科学
石墨烯
异质结
吸附
选择性
氧化物
化学工程
Atom(片上系统)
纳米技术
分析化学(期刊)
光电子学
催化作用
物理化学
有机化学
嵌入式系统
化学
冶金
工程类
计算机科学
作者
Zijie Yang,Hongshuai Zou,Yueying Zhang,Zijie Yang,Jing Wang,Siyuan Lv,Li Jiang,Chenguang Wang,Xu Yan,Peng Sun,Lijun Zhang,Yu Duan,Geyu Lu
标识
DOI:10.1002/adfm.202108959
摘要
Abstract At present, the main gas‐sensing mechanism of oxidized MXene (Ti 3 C 2 T x ) is commonly regarded as Schottky barrier modulation, but the influence of surface defects generated by oxidation is ignored and ambiguous. Herein, oxidized Ti 3 C 2 T x crumpled spheres (MS) are obtained, accompanying numerous surface defects through thermal oxidation of MS synthesized by ultrasonic spray pyrolysis technology and gas‐sensing properties of oxidized MS with Ti 3 C 2 T x /TiO 2 crumpled spheres (MT‐10‐1) without new surface defects are compared. It is demonstrated that the significant improvement of the gas‐sensing properties of oxidized MS is due to the introduction of Ti atom defects rather than Ti 3 C 2 T x /TiO 2 heterojunction in‐situ generated by oxidation. First‐principles density functional theory calculations show that Ti atom vacancy can greatly improve the adsorption ability of Ti 3 C 2 T x to gases (especially for NO 2 ). Subsequently, with the facile oxidability, Ti 3 C 2 T x is utilized as a reductant to assist the reduction of graphene oxide, and Ti 3 C 2 T x /TiO 2 /rGO crumpled spheres are subtly designed and successfully synthesized for further enhancing the gas‐sensing performance. The MG‐2‐1 sensor achieves a low detection limit of NO 2 (10 ppb), great NO 2 selectivity, and high NO 2 response. The clarification of the gas‐sensing mechanism of oxidized Ti 3 C 2 T x and the utilization of oxidation of Ti 3 C 2 T x provide a new idea for the application of MXenes.
科研通智能强力驱动
Strongly Powered by AbleSci AI