Computational fluid dynamics (CFD), artificial neural network (ANN) and genetic algorithm (GA) as a hybrid method for the analysis and optimization of micro-photocatalytic reactors: NOx abatement as a case study

计算流体力学 人工神经网络 遗传算法 光强度 均方误差 停留时间(流体动力学) 生物系统 计算机科学 算法 工艺工程 模拟 工程类 数学 人工智能 机器学习 统计 光学 物理 生物 航空航天工程 岩土工程
作者
Jéssica O.B. Lira,Humberto Gracher Riella,Natan Padoin,Cíntia Soares
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:431: 133771-133771 被引量:46
标识
DOI:10.1016/j.cej.2021.133771
摘要

In this work the hybrid CFD-ANN-GA method is proposed as a tool for the analysis and optimization of micro-photocatalytic reactors, taking NOx abatement as a case study. Initially, a 3D CFD model of the microreactor allowed the investigation of the effects of residence time, light intensity, relative humidity and initial NO concentration on the performance of the photocatalytic reaction. Then, an artificial neural network (ANN) was implemented to predict the overall conversion of NO in the micro device. Different ANN structures were developed using data from 256 CFD simulations, and the best structure was chosen based on the performance factors MSE, RMSE and R2. Moreover, a genetic algorithm (GA) was used to find the optimal operating conditions that maximize the NO conversion. The best ANN model consisted of a feed-forward back-propagation structure with three layers and 11 neurons in the hidden layer (4:11:1), logsig-logsig transfer function and training through the Levenberg-Marquardt algorithm. This network presented a high predictivity (R2 = 0.9997), and it was used for optimization by GA to determine the optimum conditions. Based on the optimization results, full NO conversion (100%) was achieved when the residence time, light intensity, relative humidity and initial concentration were 2.12 s, 10 W·m−2, 10%, and 2.09 × 10−8 kmol·m−3, respectively. Furthermore, the most influential variable on the NO conversion prediction was the residence time, with a relative importance of 48.97%. The ANN was then modified to yield two outputs: NO consumption rate and pressure drop. All parameters were kept the same, except the number of neurons in the hidden layer (17). GA was then applied to a multi-objective optimization, aiming to maximize the NO consumption rate while minimizing the pressure drop in the system. The optimal set of operating conditions in this scenario was found based on a Pareto front analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
风继续吹发布了新的文献求助10
1秒前
1秒前
Nimnse发布了新的文献求助10
2秒前
2秒前
3秒前
SciGPT应助倚栏听风采纳,获得10
3秒前
Orange应助科研通管家采纳,获得30
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
ttt发布了新的文献求助10
4秒前
寻道图强应助科研通管家采纳,获得30
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
5秒前
Mic应助科研通管家采纳,获得10
5秒前
yzy应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
5秒前
yifan92完成签到,获得积分10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
6秒前
Frank应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Mic应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
6秒前
大气早晨发布了新的文献求助10
6秒前
ding应助科研通管家采纳,获得10
6秒前
元恒的老母亲完成签到,获得积分10
6秒前
yzy应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531325
求助须知:如何正确求助?哪些是违规求助? 4620210
关于积分的说明 14572130
捐赠科研通 4559739
什么是DOI,文献DOI怎么找? 2498562
邀请新用户注册赠送积分活动 1478528
关于科研通互助平台的介绍 1449968