Computational fluid dynamics (CFD), artificial neural network (ANN) and genetic algorithm (GA) as a hybrid method for the analysis and optimization of micro-photocatalytic reactors: NOx abatement as a case study

计算流体力学 人工神经网络 遗传算法 光强度 均方误差 停留时间(流体动力学) 生物系统 计算机科学 算法 工艺工程 模拟 工程类 数学 人工智能 机器学习 统计 光学 物理 生物 航空航天工程 岩土工程
作者
Jéssica O.B. Lira,Humberto Gracher Riella,Natan Padoin,Cíntia Soares
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:431: 133771-133771 被引量:46
标识
DOI:10.1016/j.cej.2021.133771
摘要

In this work the hybrid CFD-ANN-GA method is proposed as a tool for the analysis and optimization of micro-photocatalytic reactors, taking NOx abatement as a case study. Initially, a 3D CFD model of the microreactor allowed the investigation of the effects of residence time, light intensity, relative humidity and initial NO concentration on the performance of the photocatalytic reaction. Then, an artificial neural network (ANN) was implemented to predict the overall conversion of NO in the micro device. Different ANN structures were developed using data from 256 CFD simulations, and the best structure was chosen based on the performance factors MSE, RMSE and R2. Moreover, a genetic algorithm (GA) was used to find the optimal operating conditions that maximize the NO conversion. The best ANN model consisted of a feed-forward back-propagation structure with three layers and 11 neurons in the hidden layer (4:11:1), logsig-logsig transfer function and training through the Levenberg-Marquardt algorithm. This network presented a high predictivity (R2 = 0.9997), and it was used for optimization by GA to determine the optimum conditions. Based on the optimization results, full NO conversion (100%) was achieved when the residence time, light intensity, relative humidity and initial concentration were 2.12 s, 10 W·m−2, 10%, and 2.09 × 10−8 kmol·m−3, respectively. Furthermore, the most influential variable on the NO conversion prediction was the residence time, with a relative importance of 48.97%. The ANN was then modified to yield two outputs: NO consumption rate and pressure drop. All parameters were kept the same, except the number of neurons in the hidden layer (17). GA was then applied to a multi-objective optimization, aiming to maximize the NO consumption rate while minimizing the pressure drop in the system. The optimal set of operating conditions in this scenario was found based on a Pareto front analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助奋斗听筠采纳,获得10
刚刚
刚刚
清爽难敌发布了新的文献求助10
1秒前
沉心静气搞学习完成签到,获得积分10
1秒前
1秒前
aizhujun完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
七妈完成签到,获得积分10
3秒前
4秒前
汉堡包应助22222采纳,获得10
4秒前
沸羊羊发布了新的文献求助10
4秒前
涛哥完成签到,获得积分10
4秒前
风登楼发布了新的文献求助10
6秒前
6秒前
6秒前
coco发布了新的文献求助10
7秒前
Phoebe0730发布了新的文献求助30
7秒前
7秒前
852应助xiaoming采纳,获得10
7秒前
wang发布了新的文献求助10
8秒前
Orange应助Ying采纳,获得10
8秒前
闪闪寄风完成签到,获得积分10
9秒前
9秒前
9秒前
实打实完成签到,获得积分10
9秒前
石烟祝完成签到,获得积分10
10秒前
10秒前
11秒前
冷酷愚志完成签到,获得积分10
11秒前
SciGPT应助YaoHui采纳,获得10
11秒前
哈哈哈哈哈哈完成签到,获得积分10
11秒前
12秒前
柒夏完成签到 ,获得积分10
12秒前
Jimmy完成签到,获得积分10
12秒前
啦啦啦发布了新的文献求助10
12秒前
13秒前
峥嵘发布了新的文献求助10
13秒前
Akim应助火星上的跳跳糖采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252162
求助须知:如何正确求助?哪些是违规求助? 4415980
关于积分的说明 13748195
捐赠科研通 4287828
什么是DOI,文献DOI怎么找? 2352660
邀请新用户注册赠送积分活动 1349440
关于科研通互助平台的介绍 1308945