Computational fluid dynamics (CFD), artificial neural network (ANN) and genetic algorithm (GA) as a hybrid method for the analysis and optimization of micro-photocatalytic reactors: NOx abatement as a case study

计算流体力学 人工神经网络 遗传算法 光强度 均方误差 停留时间(流体动力学) 生物系统 计算机科学 算法 工艺工程 模拟 工程类 数学 人工智能 机器学习 统计 光学 物理 生物 航空航天工程 岩土工程
作者
Jéssica O.B. Lira,Humberto Gracher Riella,Natan Padoin,Cíntia Soares
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:431: 133771-133771 被引量:46
标识
DOI:10.1016/j.cej.2021.133771
摘要

In this work the hybrid CFD-ANN-GA method is proposed as a tool for the analysis and optimization of micro-photocatalytic reactors, taking NOx abatement as a case study. Initially, a 3D CFD model of the microreactor allowed the investigation of the effects of residence time, light intensity, relative humidity and initial NO concentration on the performance of the photocatalytic reaction. Then, an artificial neural network (ANN) was implemented to predict the overall conversion of NO in the micro device. Different ANN structures were developed using data from 256 CFD simulations, and the best structure was chosen based on the performance factors MSE, RMSE and R2. Moreover, a genetic algorithm (GA) was used to find the optimal operating conditions that maximize the NO conversion. The best ANN model consisted of a feed-forward back-propagation structure with three layers and 11 neurons in the hidden layer (4:11:1), logsig-logsig transfer function and training through the Levenberg-Marquardt algorithm. This network presented a high predictivity (R2 = 0.9997), and it was used for optimization by GA to determine the optimum conditions. Based on the optimization results, full NO conversion (100%) was achieved when the residence time, light intensity, relative humidity and initial concentration were 2.12 s, 10 W·m−2, 10%, and 2.09 × 10−8 kmol·m−3, respectively. Furthermore, the most influential variable on the NO conversion prediction was the residence time, with a relative importance of 48.97%. The ANN was then modified to yield two outputs: NO consumption rate and pressure drop. All parameters were kept the same, except the number of neurons in the hidden layer (17). GA was then applied to a multi-objective optimization, aiming to maximize the NO consumption rate while minimizing the pressure drop in the system. The optimal set of operating conditions in this scenario was found based on a Pareto front analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超自然关注了科研通微信公众号
1秒前
1秒前
123完成签到,获得积分10
2秒前
fighting完成签到 ,获得积分10
2秒前
3秒前
H-kevin.完成签到,获得积分10
4秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
12秒前
叶子完成签到,获得积分10
13秒前
14秒前
鱼蛋丸子完成签到,获得积分10
16秒前
浮云发布了新的文献求助10
17秒前
18秒前
圆锥香蕉发布了新的文献求助50
19秒前
23秒前
佳佳应助闲听松风眠采纳,获得10
24秒前
超自然发布了新的文献求助10
24秒前
ding应助玖Nine采纳,获得10
25秒前
隐形曼青应助玖Nine采纳,获得10
25秒前
荡秋千的猴子完成签到,获得积分10
26秒前
叶子发布了新的文献求助10
28秒前
CodeCraft应助忧郁丹彤采纳,获得10
29秒前
32秒前
滴滴答答完成签到 ,获得积分10
32秒前
哦噢藕完成签到,获得积分10
32秒前
田様应助科研通管家采纳,获得10
32秒前
32秒前
Orange应助科研通管家采纳,获得10
32秒前
Rondab应助科研通管家采纳,获得10
33秒前
Rondab应助科研通管家采纳,获得10
33秒前
领导范儿应助科研通管家采纳,获得10
33秒前
充电宝应助科研通管家采纳,获得10
33秒前
33秒前
思源应助科研通管家采纳,获得10
33秒前
33秒前
Akim应助科研通管家采纳,获得10
33秒前
爆米花应助科研通管家采纳,获得10
33秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167