Arginine-rich peptide/platinum hybrid colloid nanoparticle cluster: A single nanozyme mimicking multi-enzymatic cascade systems in peroxisome

化学 过氧化氢酶 超氧化物歧化酶 组合化学 生物化学 纳米技术 材料科学
作者
Yan Liu,Yuling Qin,Qianya Zhang,Wenting Zou,Lingcen Jin,Rong Guo
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:600: 37-48 被引量:39
标识
DOI:10.1016/j.jcis.2021.05.025
摘要

Recently, nanozymes have attracted sustained attention for facilitating next generation of artificial enzymatic cascade systems (ECSs). However, the fabrication of integrated multi-ECSs based on a single nanozyme remains a great challenge. Here, inspired by the biological function and self-assembling ability of arginine (R), we synthesized arginine-rich peptide-Pt nanoparticle cluster (ARP-PtNC) nanozymes that mimic two typical enzymatic cascade systems of uricase/catalase and superoxide dismutase/catalase in natural peroxisome. ARPs containing at least 10 arginine residues contribute to the cluster formation based on hydrogen bonding and coordination. The well-designed peptide-Pt hybrid nanozyme not only possesses excellent uricase-mimicking activity to degrade uric acid effectively, but also serves as a desired scavenger for reactive oxygen species (ROS) harnessing two efficient enzyme cascade catalysis of uricase/catalase and superoxide dismutase/catalase. The surface microenvironment of the hybrid nanozymes provided by arginine-rich peptides and the cluster structure contribute to the efficient multiply enzyme-like activities. Fascinatingly, the hybrid nanozyme can inhibit the formation of monosodium urate monohydrate effectively based on the architecture of ARP-PtNCs. Thus, ARP-PtNC nanozyme has the potential in gout and hyperuricemia therapy. Rational design of ingenious peptide-metal hybrid nanozyme with unique physicochemical surface properties provides a versatile and designed strategy to fabricate multi-enzymatic cascade systems, which opens new avenues to broaden the application of nanozymes in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热靖雁发布了新的文献求助40
1秒前
2秒前
瑾玉发布了新的文献求助10
3秒前
旖旎完成签到 ,获得积分10
8秒前
Mn发布了新的文献求助10
9秒前
9秒前
慕青应助Freja采纳,获得10
9秒前
Shuo Yang发布了新的文献求助10
10秒前
ye完成签到,获得积分10
11秒前
Logan完成签到,获得积分10
12秒前
瑾玉完成签到,获得积分10
12秒前
dmy完成签到 ,获得积分10
17秒前
万能图书馆应助Freja采纳,获得10
20秒前
羊羊羊完成签到,获得积分10
21秒前
21秒前
ZhaoPeng完成签到,获得积分10
22秒前
22秒前
Akim应助科研通管家采纳,获得10
24秒前
wen123应助科研通管家采纳,获得10
24秒前
wanci应助科研通管家采纳,获得10
25秒前
华仔应助科研通管家采纳,获得10
25秒前
拾光完成签到,获得积分10
26秒前
年轻的吐司完成签到,获得积分10
30秒前
陶醉铁身完成签到,获得积分20
31秒前
方格子完成签到 ,获得积分10
31秒前
完美世界应助Freja采纳,获得10
32秒前
大福完成签到,获得积分10
32秒前
陶醉铁身发布了新的文献求助10
34秒前
35秒前
DUAN完成签到,获得积分10
36秒前
一天不学浑身难受完成签到 ,获得积分10
41秒前
珍珠发布了新的文献求助10
42秒前
43秒前
43秒前
wq完成签到,获得积分10
44秒前
46秒前
47秒前
zho发布了新的文献求助10
48秒前
Spine脊柱发布了新的文献求助10
49秒前
珍珠完成签到 ,获得积分20
50秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057308
求助须知:如何正确求助?哪些是违规求助? 2713802
关于积分的说明 7437402
捐赠科研通 2358921
什么是DOI,文献DOI怎么找? 1249607
科研通“疑难数据库(出版商)”最低求助积分说明 607190
版权声明 596314