Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review

磁共振成像 人工智能 计算机科学 模式 深度学习 预处理器 神经影像学 多发性硬化 特征选择 模态(人机交互) 机器学习 特征(语言学) 医学 放射科 社会科学 语言学 哲学 精神科 社会学
作者
Afshin Shoeibi,Marjane Khodatars,Mahboobeh Jafari,Parisa Moridian,Mitra Rezaei,Roohallah Alizadehsani,Fahime Khozeimeh,Juan Manuel Górriz,Jónathan Heras,Maryam Panahiazar,Saeid Nahavandi,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104697-104697 被引量:106
标识
DOI:10.1016/j.compbiomed.2021.104697
摘要

Multiple Sclerosis (MS) is a type of brain disease which causes visual, sensory, and motor problems for people with a detrimental effect on the functioning of the nervous system. In order to diagnose MS, multiple screening methods have been proposed so far; among them, magnetic resonance imaging (MRI) has received considerable attention among physicians. MRI modalities provide physicians with fundamental information about the structure and function of the brain, which is crucial for the rapid diagnosis of MS lesions. Diagnosing MS using MRI is time-consuming, tedious, and prone to manual errors. Research on the implementation of computer aided diagnosis system (CADS) based on artificial intelligence (AI) to diagnose MS involves conventional machine learning and deep learning (DL) methods. In conventional machine learning, feature extraction, feature selection, and classification steps are carried out by using trial and error; on the contrary, these steps in DL are based on deep layers whose values are automatically learn. In this paper, a complete review of automated MS diagnosis methods performed using DL techniques with MRI neuroimaging modalities is provided. Initially, the steps involved in various CADS proposed using MRI modalities and DL techniques for MS diagnosis are investigated. The important preprocessing techniques employed in various works are analyzed. Most of the published papers on MS diagnosis using MRI modalities and DL are presented. The most significant challenges facing and future direction of automated diagnosis of MS using MRI modalities and DL techniques are also provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ethereal完成签到,获得积分10
刚刚
2秒前
Ethereal发布了新的文献求助10
3秒前
炒米粉完成签到,获得积分10
4秒前
DDDuan发布了新的文献求助10
5秒前
吃吃货发布了新的文献求助10
5秒前
7秒前
8秒前
平常的苡完成签到,获得积分10
8秒前
9秒前
juzi完成签到,获得积分20
9秒前
10秒前
10秒前
xsl完成签到 ,获得积分10
11秒前
坦率的惊蛰完成签到,获得积分10
11秒前
IV发布了新的文献求助10
12秒前
12秒前
科研通AI2S应助DLDL采纳,获得10
12秒前
李星发布了新的文献求助10
12秒前
赘婿应助红宝采纳,获得10
13秒前
hhhhh发布了新的文献求助10
15秒前
无情芝麻发布了新的文献求助10
15秒前
难过的采柳完成签到,获得积分10
15秒前
HZW完成签到 ,获得积分10
17秒前
wys完成签到 ,获得积分10
18秒前
坚强白玉完成签到,获得积分10
18秒前
murry123发布了新的文献求助10
18秒前
汉堡包应助Young采纳,获得10
20秒前
21秒前
22秒前
小生完成签到,获得积分10
23秒前
ozz完成签到,获得积分10
23秒前
25秒前
李星完成签到,获得积分20
29秒前
情怀应助科研通管家采纳,获得10
30秒前
FashionBoy应助科研通管家采纳,获得10
30秒前
KleinFC应助科研通管家采纳,获得10
30秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
完美世界应助科研通管家采纳,获得10
30秒前
KleinFC应助科研通管家采纳,获得10
30秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269309
求助须知:如何正确求助?哪些是违规求助? 2908800
关于积分的说明 8346872
捐赠科研通 2578994
什么是DOI,文献DOI怎么找? 1402553
科研通“疑难数据库(出版商)”最低求助积分说明 655470
邀请新用户注册赠送积分活动 634632