清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Object-level change detection with a dual correlation attention-guided detector

计算机科学 变更检测 人工智能 目标检测 跳跃式监视 背景(考古学) 计算机视觉 特征提取 深度学习 模式识别(心理学) 比例(比率) 对象(语法) 特征(语言学) 像素 最小边界框 图像(数学) 地理 哲学 语言学 地图学 考古
作者
Lin Zhang,Xiangyun Hu,Mi Zhang,Zhen Shu,Hao Zhou
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:177: 147-160 被引量:68
标识
DOI:10.1016/j.isprsjprs.2021.05.002
摘要

Automatic change detection from remotely sensed imagery is extremely important for many applications, including land use mapping. In recent years, a growing number of researchers have applied capable deep-learning methods to the research on change detection. The majority of deep learning-based change detection methods currently perform pixel-by-pixel classification at the original image scale, but they can hardly avoid the false changes caused by strong parallax effects and projected shadows, without considering the totality of changed objects/regions. In this study, we propose an object-level change detection framework to detect changed geographic entities (such as newly built buildings or changed artificial structures) by paying more attention to the overall characteristics and context association of changed object instances. The detected changed objects are represented as bounding boxes, which are simple, regular, and convenient to use in object feature extraction. In terms of data handling, a special data augmentation method for change detection called Alternative-Mosaic is proposed to effectively accelerate model training and improve model performance. For the model, we propose a one-stage change detection network called dual correlation attention-guided detector (DCA-Det) to detect the changed objects. In particular, we feed the dual-temporal images into a weight-shared backbone network to extract the change features of different scales. The change features on the same scale are further refined, and then the features between different scales are fused by the correlation attention-guided feature fusion neck. Finally, the change detection heads output the prediction results of the changed objects/regions of different scales. Experiments were conducted on public LEVIR building change detection and aerial imagery change detection (AICD) datasets. The quantitative evaluation and visualization results proved the superiority and robustness of our framework. Our DCA-Det can obtain state-of-the-art performance on object-level metrics (99.50% APIoU=.50 and 79.72% APIoU=.50:.05:.95) on the AICD-2012 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吊炸天完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
15秒前
隐形曼青应助wuuw采纳,获得10
28秒前
迷茫的一代完成签到,获得积分10
36秒前
38秒前
V_I_G完成签到 ,获得积分10
39秒前
wuuw发布了新的文献求助10
42秒前
57秒前
袁建波完成签到,获得积分10
1分钟前
无悔完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
guoguo1119完成签到 ,获得积分10
1分钟前
REAL完成签到 ,获得积分10
3分钟前
3分钟前
奔跑的小熊完成签到 ,获得积分10
3分钟前
闲人颦儿完成签到,获得积分10
3分钟前
3分钟前
3分钟前
dfgux发布了新的文献求助10
3分钟前
3分钟前
三明治发布了新的文献求助10
4分钟前
达克赛德完成签到 ,获得积分10
4分钟前
gsji完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
Ava应助科研通管家采纳,获得10
5分钟前
alex12259完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
咯咯咯完成签到 ,获得积分10
6分钟前
gege完成签到,获得积分10
8分钟前
harden9159完成签到,获得积分10
9分钟前
10分钟前
10分钟前
10分钟前
科研通AI6应助科研通管家采纳,获得10
11分钟前
11分钟前
zxcvvbb1001完成签到 ,获得积分10
11分钟前
量子星尘发布了新的文献求助10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516185
求助须知:如何正确求助?哪些是违规求助? 4609279
关于积分的说明 14514700
捐赠科研通 4545874
什么是DOI,文献DOI怎么找? 2490961
邀请新用户注册赠送积分活动 1472760
关于科研通互助平台的介绍 1444569