Object-level change detection with a dual correlation attention-guided detector

计算机科学 变更检测 人工智能 目标检测 跳跃式监视 背景(考古学) 计算机视觉 特征提取 深度学习 模式识别(心理学) 比例(比率) 对象(语法) 特征(语言学) 像素 最小边界框 图像(数学) 地理 哲学 语言学 地图学 考古
作者
Lin Zhang,Xiangyun Hu,Mi Zhang,Zhen Shu,Hao Zhou
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:177: 147-160 被引量:68
标识
DOI:10.1016/j.isprsjprs.2021.05.002
摘要

Automatic change detection from remotely sensed imagery is extremely important for many applications, including land use mapping. In recent years, a growing number of researchers have applied capable deep-learning methods to the research on change detection. The majority of deep learning-based change detection methods currently perform pixel-by-pixel classification at the original image scale, but they can hardly avoid the false changes caused by strong parallax effects and projected shadows, without considering the totality of changed objects/regions. In this study, we propose an object-level change detection framework to detect changed geographic entities (such as newly built buildings or changed artificial structures) by paying more attention to the overall characteristics and context association of changed object instances. The detected changed objects are represented as bounding boxes, which are simple, regular, and convenient to use in object feature extraction. In terms of data handling, a special data augmentation method for change detection called Alternative-Mosaic is proposed to effectively accelerate model training and improve model performance. For the model, we propose a one-stage change detection network called dual correlation attention-guided detector (DCA-Det) to detect the changed objects. In particular, we feed the dual-temporal images into a weight-shared backbone network to extract the change features of different scales. The change features on the same scale are further refined, and then the features between different scales are fused by the correlation attention-guided feature fusion neck. Finally, the change detection heads output the prediction results of the changed objects/regions of different scales. Experiments were conducted on public LEVIR building change detection and aerial imagery change detection (AICD) datasets. The quantitative evaluation and visualization results proved the superiority and robustness of our framework. Our DCA-Det can obtain state-of-the-art performance on object-level metrics (99.50% APIoU=.50 and 79.72% APIoU=.50:.05:.95) on the AICD-2012 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深藏blue完成签到,获得积分10
刚刚
俭朴老五完成签到,获得积分10
1秒前
张流筝完成签到 ,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
年轻花卷完成签到 ,获得积分10
3秒前
Sun发布了新的文献求助10
4秒前
4秒前
4秒前
2010发布了新的文献求助10
4秒前
小张要发论文完成签到,获得积分10
4秒前
内向尔安完成签到,获得积分10
4秒前
linhua发布了新的文献求助10
4秒前
现代水卉完成签到,获得积分10
4秒前
俭朴老五发布了新的文献求助10
4秒前
周轩完成签到,获得积分10
5秒前
搜集达人应助君无邪采纳,获得10
5秒前
caoll发布了新的文献求助10
5秒前
NexusExplorer应助高子懿采纳,获得10
5秒前
qaplay完成签到 ,获得积分0
5秒前
6秒前
好好应助尹二采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
Hayworth完成签到,获得积分10
7秒前
顺心夜阑发布了新的文献求助10
7秒前
刘123完成签到 ,获得积分10
7秒前
8秒前
Lucas应助wow采纳,获得10
8秒前
xiao完成签到,获得积分10
8秒前
欢喜蛋挞发布了新的文献求助10
9秒前
王鹏发布了新的文献求助10
9秒前
yangchao1289发布了新的文献求助10
9秒前
打打应助Sun采纳,获得10
9秒前
Colo完成签到,获得积分10
9秒前
小马甲应助LILILILILI采纳,获得10
9秒前
10秒前
10秒前
Owen应助zhl2210536采纳,获得10
10秒前
沉静缘分完成签到,获得积分10
12秒前
宋丽娟完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515