Object-level change detection with a dual correlation attention-guided detector

计算机科学 变更检测 人工智能 目标检测 跳跃式监视 背景(考古学) 计算机视觉 特征提取 深度学习 模式识别(心理学) 比例(比率) 对象(语法) 特征(语言学) 像素 最小边界框 图像(数学) 地理 哲学 考古 地图学 语言学
作者
Lin Zhang,Xiangyun Hu,Mi Zhang,Zhen Shu,Hao Zhou
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:177: 147-160 被引量:68
标识
DOI:10.1016/j.isprsjprs.2021.05.002
摘要

Automatic change detection from remotely sensed imagery is extremely important for many applications, including land use mapping. In recent years, a growing number of researchers have applied capable deep-learning methods to the research on change detection. The majority of deep learning-based change detection methods currently perform pixel-by-pixel classification at the original image scale, but they can hardly avoid the false changes caused by strong parallax effects and projected shadows, without considering the totality of changed objects/regions. In this study, we propose an object-level change detection framework to detect changed geographic entities (such as newly built buildings or changed artificial structures) by paying more attention to the overall characteristics and context association of changed object instances. The detected changed objects are represented as bounding boxes, which are simple, regular, and convenient to use in object feature extraction. In terms of data handling, a special data augmentation method for change detection called Alternative-Mosaic is proposed to effectively accelerate model training and improve model performance. For the model, we propose a one-stage change detection network called dual correlation attention-guided detector (DCA-Det) to detect the changed objects. In particular, we feed the dual-temporal images into a weight-shared backbone network to extract the change features of different scales. The change features on the same scale are further refined, and then the features between different scales are fused by the correlation attention-guided feature fusion neck. Finally, the change detection heads output the prediction results of the changed objects/regions of different scales. Experiments were conducted on public LEVIR building change detection and aerial imagery change detection (AICD) datasets. The quantitative evaluation and visualization results proved the superiority and robustness of our framework. Our DCA-Det can obtain state-of-the-art performance on object-level metrics (99.50% APIoU=.50 and 79.72% APIoU=.50:.05:.95) on the AICD-2012 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chanvze发布了新的文献求助10
1秒前
zzz完成签到 ,获得积分10
1秒前
奋斗静蕾发布了新的文献求助10
2秒前
大知闲闲发布了新的文献求助10
3秒前
sxf发布了新的文献求助10
4秒前
持满发布了新的文献求助10
4秒前
4秒前
大锤哥发布了新的文献求助10
6秒前
简单的妙之完成签到,获得积分10
6秒前
bellla完成签到 ,获得积分20
6秒前
6秒前
喵了个咪发布了新的文献求助10
6秒前
大模型应助1157588380采纳,获得10
6秒前
ding应助奋斗静蕾采纳,获得10
7秒前
strong.quite完成签到,获得积分10
8秒前
迪迦完成签到,获得积分10
9秒前
vendimia发布了新的文献求助10
9秒前
科研通AI5应助Capital采纳,获得10
11秒前
Cyrus发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
pcr163应助Lico采纳,获得200
14秒前
loren应助彩色的中蓝采纳,获得10
14秒前
15秒前
我不理解关注了科研通微信公众号
16秒前
酷波er应助难过冰淇淋采纳,获得10
16秒前
16秒前
左园园完成签到,获得积分10
18秒前
19秒前
儒雅的善愁完成签到,获得积分10
19秒前
一个小胖子完成签到,获得积分10
19秒前
goldNAN发布了新的文献求助10
19秒前
乐乐应助快乐映秋采纳,获得10
20秒前
21秒前
陈秋红完成签到,获得积分10
21秒前
PINk发布了新的文献求助10
22秒前
22秒前
章赛发布了新的文献求助10
23秒前
24秒前
左园园发布了新的文献求助10
25秒前
搜集达人应助DS采纳,获得10
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144025
求助须知:如何正确求助?哪些是违规求助? 4341830
关于积分的说明 13521491
捐赠科研通 4182277
什么是DOI,文献DOI怎么找? 2293363
邀请新用户注册赠送积分活动 1293893
关于科研通互助平台的介绍 1236661