Object-level change detection with a dual correlation attention-guided detector

计算机科学 变更检测 人工智能 目标检测 跳跃式监视 背景(考古学) 计算机视觉 特征提取 深度学习 模式识别(心理学) 比例(比率) 对象(语法) 特征(语言学) 像素 最小边界框 图像(数学) 地理 哲学 语言学 地图学 考古
作者
Lin Zhang,Xiangyun Hu,Mi Zhang,Zhen Shu,Hao Zhou
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:177: 147-160 被引量:68
标识
DOI:10.1016/j.isprsjprs.2021.05.002
摘要

Automatic change detection from remotely sensed imagery is extremely important for many applications, including land use mapping. In recent years, a growing number of researchers have applied capable deep-learning methods to the research on change detection. The majority of deep learning-based change detection methods currently perform pixel-by-pixel classification at the original image scale, but they can hardly avoid the false changes caused by strong parallax effects and projected shadows, without considering the totality of changed objects/regions. In this study, we propose an object-level change detection framework to detect changed geographic entities (such as newly built buildings or changed artificial structures) by paying more attention to the overall characteristics and context association of changed object instances. The detected changed objects are represented as bounding boxes, which are simple, regular, and convenient to use in object feature extraction. In terms of data handling, a special data augmentation method for change detection called Alternative-Mosaic is proposed to effectively accelerate model training and improve model performance. For the model, we propose a one-stage change detection network called dual correlation attention-guided detector (DCA-Det) to detect the changed objects. In particular, we feed the dual-temporal images into a weight-shared backbone network to extract the change features of different scales. The change features on the same scale are further refined, and then the features between different scales are fused by the correlation attention-guided feature fusion neck. Finally, the change detection heads output the prediction results of the changed objects/regions of different scales. Experiments were conducted on public LEVIR building change detection and aerial imagery change detection (AICD) datasets. The quantitative evaluation and visualization results proved the superiority and robustness of our framework. Our DCA-Det can obtain state-of-the-art performance on object-level metrics (99.50% APIoU=.50 and 79.72% APIoU=.50:.05:.95) on the AICD-2012 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光洋葱发布了新的文献求助30
刚刚
Lucas应助royan2采纳,获得10
刚刚
寂寞的冥王星完成签到,获得积分10
刚刚
txh12323完成签到,获得积分20
1秒前
2秒前
77发布了新的文献求助10
2秒前
提速狗完成签到,获得积分10
2秒前
二两橙子完成签到,获得积分10
3秒前
hanchangcun发布了新的文献求助10
4秒前
Janice227完成签到,获得积分10
4秒前
无花果应助liu欣慰采纳,获得10
5秒前
6秒前
自我鱼完成签到,获得积分10
7秒前
8秒前
8秒前
隐形曼青应助旺仔采纳,获得10
9秒前
9秒前
9秒前
sue完成签到,获得积分10
10秒前
10秒前
zhouxy发布了新的文献求助20
11秒前
11秒前
二中所长发布了新的文献求助10
11秒前
11秒前
CipherSage应助忐忑的尔容采纳,获得10
11秒前
资浩阑完成签到,获得积分10
12秒前
12秒前
royan2发布了新的文献求助10
13秒前
su发布了新的文献求助10
13秒前
Chenbiao完成签到,获得积分10
13秒前
ZX801发布了新的文献求助10
13秒前
txh12323发布了新的文献求助10
13秒前
13秒前
上官若男应助二两橙子采纳,获得10
13秒前
汉堡包应助土豆侠采纳,获得10
14秒前
14秒前
luna完成签到 ,获得积分10
15秒前
明越发布了新的文献求助10
15秒前
汉堡包应助博士牲牛马采纳,获得10
15秒前
Chenbiao发布了新的文献求助10
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227431
求助须知:如何正确求助?哪些是违规求助? 2875461
关于积分的说明 8191338
捐赠科研通 2542765
什么是DOI,文献DOI怎么找? 1373026
科研通“疑难数据库(出版商)”最低求助积分说明 646618
邀请新用户注册赠送积分活动 621099