Object-level change detection with a dual correlation attention-guided detector

计算机科学 变更检测 人工智能 目标检测 跳跃式监视 背景(考古学) 计算机视觉 特征提取 深度学习 模式识别(心理学) 比例(比率) 对象(语法) 特征(语言学) 像素 最小边界框 图像(数学) 地理 哲学 考古 地图学 语言学
作者
Lin Zhang,Xiangyun Hu,Mi Zhang,Zhen Shu,Hao Zhou
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:177: 147-160 被引量:68
标识
DOI:10.1016/j.isprsjprs.2021.05.002
摘要

Automatic change detection from remotely sensed imagery is extremely important for many applications, including land use mapping. In recent years, a growing number of researchers have applied capable deep-learning methods to the research on change detection. The majority of deep learning-based change detection methods currently perform pixel-by-pixel classification at the original image scale, but they can hardly avoid the false changes caused by strong parallax effects and projected shadows, without considering the totality of changed objects/regions. In this study, we propose an object-level change detection framework to detect changed geographic entities (such as newly built buildings or changed artificial structures) by paying more attention to the overall characteristics and context association of changed object instances. The detected changed objects are represented as bounding boxes, which are simple, regular, and convenient to use in object feature extraction. In terms of data handling, a special data augmentation method for change detection called Alternative-Mosaic is proposed to effectively accelerate model training and improve model performance. For the model, we propose a one-stage change detection network called dual correlation attention-guided detector (DCA-Det) to detect the changed objects. In particular, we feed the dual-temporal images into a weight-shared backbone network to extract the change features of different scales. The change features on the same scale are further refined, and then the features between different scales are fused by the correlation attention-guided feature fusion neck. Finally, the change detection heads output the prediction results of the changed objects/regions of different scales. Experiments were conducted on public LEVIR building change detection and aerial imagery change detection (AICD) datasets. The quantitative evaluation and visualization results proved the superiority and robustness of our framework. Our DCA-Det can obtain state-of-the-art performance on object-level metrics (99.50% APIoU=.50 and 79.72% APIoU=.50:.05:.95) on the AICD-2012 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过分动真发布了新的文献求助20
刚刚
高贵的夜南完成签到,获得积分10
刚刚
火星上的菲鹰给冰激凌UP的求助进行了留言
刚刚
1秒前
尺素寸心发布了新的文献求助10
2秒前
orixero应助BOSLobster采纳,获得10
3秒前
orixero应助yatou5651采纳,获得10
4秒前
在水一方应助卡卡采纳,获得10
4秒前
追寻羿完成签到 ,获得积分10
5秒前
hhzz发布了新的文献求助10
5秒前
7秒前
7秒前
8秒前
8秒前
科研通AI2S应助好玩和有趣采纳,获得10
8秒前
美丽跳跳糖完成签到,获得积分20
8秒前
8秒前
丘比特应助llll采纳,获得10
9秒前
9秒前
迟大猫应助su采纳,获得10
9秒前
发嗲的戎完成签到 ,获得积分10
10秒前
10秒前
内向凌兰完成签到,获得积分10
10秒前
10秒前
zhappy完成签到,获得积分10
11秒前
satchzhao发布了新的文献求助10
11秒前
友好的妍完成签到 ,获得积分10
12秒前
香山叶正红完成签到 ,获得积分10
13秒前
TOM发布了新的文献求助10
13秒前
沙耶酱完成签到,获得积分10
13秒前
赢赢发布了新的文献求助10
14秒前
15秒前
尺素寸心完成签到,获得积分10
16秒前
17秒前
老实不尤完成签到,获得积分10
18秒前
CCL应助mammoth采纳,获得40
19秒前
20秒前
20秒前
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808