Object-level change detection with a dual correlation attention-guided detector

计算机科学 变更检测 人工智能 目标检测 跳跃式监视 背景(考古学) 计算机视觉 特征提取 深度学习 模式识别(心理学) 比例(比率) 对象(语法) 特征(语言学) 像素 最小边界框 图像(数学) 地理 哲学 语言学 地图学 考古
作者
Lin Zhang,Xiangyun Hu,Mi Zhang,Zhen Shu,Hao Zhou
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:177: 147-160 被引量:68
标识
DOI:10.1016/j.isprsjprs.2021.05.002
摘要

Automatic change detection from remotely sensed imagery is extremely important for many applications, including land use mapping. In recent years, a growing number of researchers have applied capable deep-learning methods to the research on change detection. The majority of deep learning-based change detection methods currently perform pixel-by-pixel classification at the original image scale, but they can hardly avoid the false changes caused by strong parallax effects and projected shadows, without considering the totality of changed objects/regions. In this study, we propose an object-level change detection framework to detect changed geographic entities (such as newly built buildings or changed artificial structures) by paying more attention to the overall characteristics and context association of changed object instances. The detected changed objects are represented as bounding boxes, which are simple, regular, and convenient to use in object feature extraction. In terms of data handling, a special data augmentation method for change detection called Alternative-Mosaic is proposed to effectively accelerate model training and improve model performance. For the model, we propose a one-stage change detection network called dual correlation attention-guided detector (DCA-Det) to detect the changed objects. In particular, we feed the dual-temporal images into a weight-shared backbone network to extract the change features of different scales. The change features on the same scale are further refined, and then the features between different scales are fused by the correlation attention-guided feature fusion neck. Finally, the change detection heads output the prediction results of the changed objects/regions of different scales. Experiments were conducted on public LEVIR building change detection and aerial imagery change detection (AICD) datasets. The quantitative evaluation and visualization results proved the superiority and robustness of our framework. Our DCA-Det can obtain state-of-the-art performance on object-level metrics (99.50% APIoU=.50 and 79.72% APIoU=.50:.05:.95) on the AICD-2012 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天天发布了新的文献求助50
2秒前
烧炭匠完成签到,获得积分10
6秒前
杨自强发布了新的文献求助10
6秒前
7秒前
CAOHOU应助wsf2023采纳,获得10
8秒前
秃头钙钛矿完成签到,获得积分10
8秒前
maomao发布了新的文献求助10
9秒前
10秒前
大模型应助坚强慕蕊采纳,获得10
11秒前
梁小氓完成签到 ,获得积分10
12秒前
11完成签到 ,获得积分10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
12秒前
12秒前
12秒前
所所应助科研通管家采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
请勿继续完成签到,获得积分10
14秒前
14秒前
jiezzz完成签到,获得积分10
14秒前
FDY发布了新的文献求助10
15秒前
15秒前
CG发布了新的文献求助10
19秒前
周杰发布了新的文献求助10
20秒前
北彧发布了新的文献求助10
20秒前
20秒前
传奇3应助xie采纳,获得10
22秒前
乖猫要努力应助白笑石采纳,获得10
22秒前
小橘子发布了新的文献求助10
23秒前
25秒前
26秒前
欢欢欢乐乐乐乐完成签到,获得积分10
27秒前
28秒前
28秒前
29秒前
NexusExplorer应助苏翰英采纳,获得10
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182