概化理论
计算机科学
工作流程
机器学习
过程(计算)
人工智能
临床实习
简单(哲学)
变化(天文学)
风险分析(工程)
心理学
医学
数据库
认识论
操作系统
物理
发展心理学
哲学
天体物理学
家庭医学
作者
James A. Diao,Leia Wedlund,Joseph C. Kvedar
标识
DOI:10.1038/s41746-021-00495-4
摘要
Abstract Advances in medical machine learning are expected to help personalize care, improve outcomes, and reduce wasteful spending. In quantifying potential benefits, it is important to account for constraints arising from clinical workflows. Practice variation is known to influence the accuracy and generalizability of predictive models, but its effects on cost-effectiveness and utilization are less well-described. A simulation-based approach by Mišić and colleagues goes beyond simple performance metrics to evaluate how process variables may influence the impact and financial feasibility of clinical prediction algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI