Robots are taking up the challenges in photovoltaics R&D

可再生能源 高效能源利用 吞吐量 光伏 机器人 有机太阳能电池 光伏系统 持续时间(音乐) 纳米技术 人工智能 计算机科学 工程类 模拟 电气工程 电信 材料科学 物理 无线 声学
作者
Yu Qi Zheng,Kaiyue Zheng,Lei Ma,Zhe Liu
出处
期刊:Matter [Elsevier]
卷期号:4 (8): 2605-2607
标识
DOI:10.1016/j.matt.2021.06.012
摘要

High-throughput experimentation platforms and machine learning have shown preliminary success in materials research acceleration. Recently in Joule, Du, Brabec, and colleagues showed the potential of using a robotic platform to optimize organic photovoltaics (OPV) materials and devices. With a short experimental time of 70 h, it was demonstrated to achieve a power conversion efficiency of 14% and a photostability duration of 50 h. High-throughput experimentation platforms and machine learning have shown preliminary success in materials research acceleration. Recently in Joule, Du, Brabec, and colleagues showed the potential of using a robotic platform to optimize organic photovoltaics (OPV) materials and devices. With a short experimental time of 70 h, it was demonstrated to achieve a power conversion efficiency of 14% and a photostability duration of 50 h. Human beings’ demand for energy has made a huge impact on climate change, i.e., 73.2% of CO2 emission is related to energy usage.1Ritchie H. Roser M. Emissions by sector - Our World in Data.https://ourworldindata.org/emissions-by-sector#energy-electricity-heat-and-transport-73-2Google Scholar It is imperative to rapidly develop and deploy the technologies of renewable energy to achieve the carbon-neutral goal. Materials scientists at the 2016 IC6 workshop of Mission Innovation have asked a key question: “Can we tackle the climate challenge in energy materials innovations by utilizing robotic high-throughput platforms and artificial intelligence (AI)?” Within the past few years, we’ve seen the “future laboratory” coming into reality. For example, the flow synthesis robot plans the synthesis route based on all available reaction data in the literature and completes the chemical synthesis experiment autonomously.2Coley C.W. Barzilay R. Jaakkola T.S. Green W.H. Jensen K.F. Prediction of Organic Reaction Outcomes Using Machine Learning.ACS Cent. Sci. 2017; 3: 434-443https://doi.org/10.1021/acscentsci.7b00064Crossref PubMed Scopus (343) Google Scholar The mobile robot chemist was able to complete the entire optimization cycle of 688 experiments in 8 days with 10 process variables without any human intervention.3Burger B. Maffettone P.M. Gusev V.V. Aitchison C.M. Bai Y. Wang X. Li X. Alston B.M. Li B. Clowes R. et al.A mobile robotic chemist.Nature. 2020; 583: 237-241https://doi.org/10.1038/s41586-020-2442-2Crossref PubMed Scopus (238) Google Scholar Most recently published in Joule,4Du X. Lüer L. Heumueller T. Wagner J. Berger C. Osterrieder T. Wortmann J. Langner S. Vongsaysy U. Bertrand M. et al.Elucidating the Full Potential of OPV Materials Utilizing a High-Throughput Robot-Based Platform and Machine Learning.Joule. 2021; 5: 495-506https://doi.org/10.1016/j.joule.2020.12.013Abstract Full Text Full Text PDF Scopus (25) Google Scholar X. Du, C.J. Brabec, and colleagues showed us the impressive potential of a robot-based automated experimental platform “AMANDA Line One” in the rapid development of organic photovoltaics (OPV) devices (Figure 1). In contrast to the conventional experimental methods of trial and error or one-variable-at-time planning, the authors demonstrated that this robotic platform completed quick cycles of fabrication, characterization, and analysis. With 70 h and 100 process conditions, two crucial performance metrics of photovoltaics devices, i.e., power conversion efficiency (PCE) and operational stability illumination, were optimized autonomously. These process conditions were sampled in 10-dimensional parameter space: donor and acceptor weight ratio; solution concentration; spin speed, active-layer annealing temperature; active-layer annealing time; solvent additives; etc. The optimal process conditions were found for the best PCE of 14% under the standard testing condition and the best device photostability of 50 h under degradation testing. For high-dimensional analysis of the process parameter space, a machine-learning regression model (particularly, Gaussian process regression [GPR] was used) can be easily trained with the experimental dataset. Some insights about the process-PCE correlation and process-stability correlation were obtained with the predictive machine-learning model, e.g., (1) annealing temperatures above 140°C for active layer generally reduced the PCE, and longer annealing time leads to instability of the devices; (2) a clear trend that PCE is increasing with an increase in spin speed, especially for low-temperature annealing of the active layer, can be observed; and (3) donor and acceptor weight ratio around 1:1.2 is the optimum for PCE, but a higher ratio shows better stability. All these physical insights could not be easily drawn because human brains are not well trained to analyze a 10-dimensional dataset. For most people, navigating in a 4-dimensional parameter space is already a challenging task. In addition, AMANDA Line One also provides more reliable experimental results (by reducing process variations), uses a shorter experimental time, and consumes a smaller amount of materials. The authors of this work have undoubtedly shined some light on the future of materials research by combining the advancement in the fields of robotics and machine learning. We see the advantages that the robotic platform can free up materials researchers from some repetitive lab work and give them significantly more time to define the experimental hypothesis (rather than conduct process optimization). However, we have also found two crucial questions to be addressed in the community of applied AI development. First, will these automated tools worsen the inequity among different research groups? A fully automated system like this one requires a significant amount of capital investment, and this capital requirement will become a barrier for many smaller groups to access the highly productive research capability. We need to find a way to reduce these barriers. The operation model of “cloud labs” or “paid by hours” could be an interesting approach to democratize these automation tools. Another way could be to democratize the materials data instead of democratizing the tools. However, we must define sustainable incentives for researchers to share their data openly and timely so that everyone can have access to the latest experimental databases. Second, do we want all the lab works to be automated? We’ve heard so many fascinating stories for “discovery by accident” in the history of science. Without getting our hands dirty in the labs, we might easily miss the chance for materials discovery by accident. One possible solution is to develop specialized machine-learning algorithms that can explore the unknown experimental space and alert us about any outlier points. On the other hand, we still need to find a better way to work collaboratively with these robots and machine-learning algorithms. We might even need to fundamentally change the education program so that those future material scientists have the mindsets and skillsets to work collaboratively with the robots. Nevertheless, in the new era of AI, the combination of high-throughput experimental platforms and machine-learning algorithms will improve research productivity and accelerate materials development.5Correa-Baena J.-P. Hippalgaonkar K. van Duren J. Jaffer S. Chandrasekhar V.R. Stevanovic V. Wadia C. Guha S. Buonassisi T. Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing.Joule. 2018; 2: 1410-1420https://doi.org/10.1016/j.joule.2018.05.009Abstract Full Text Full Text PDF Scopus (123) Google Scholar Especially, with the pressing challenge of climate change, we must break the silos of discipline and use the best tools we have for the innovation tasks of clean energy materials. Robot-Based High-Throughput Screening of Antisolvents for Lead Halide PerovskitesGu et al.JouleJuly 14, 2020In BriefA robotic platform is adopted to conduct a comprehensive solvent engineering for making lead halide perovskites in a high-throughput manner. Deeper insights into the working mechanisms and selection criteria of antisolvents are investigated and summarized. In addition, a reliable antisolvent database is established, and verification tests match well with the theory. Furthermore, our work provides significant guidance for designing functional and environment-friendly mixed solvent systems to fabricate high-quality perovskite materials or devices. Full-Text PDF Open Archive
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南巷完成签到,获得积分10
刚刚
1秒前
踏水追风完成签到,获得积分10
2秒前
刘菲清发布了新的文献求助200
5秒前
Reut_Hyu完成签到,获得积分10
6秒前
无私小小完成签到,获得积分10
7秒前
孤独雨梅完成签到,获得积分10
9秒前
11秒前
爱尚Coco应助liz采纳,获得10
12秒前
认真的飞扬完成签到,获得积分10
14秒前
LYZSh完成签到,获得积分10
14秒前
YK完成签到,获得积分10
16秒前
jianjiao完成签到,获得积分10
17秒前
17秒前
18秒前
子焱发布了新的文献求助30
22秒前
LJJ完成签到 ,获得积分10
22秒前
三石完成签到 ,获得积分10
23秒前
yanjiuhuzu完成签到,获得积分10
24秒前
李建勋完成签到 ,获得积分10
24秒前
xiumei1998完成签到,获得积分10
25秒前
所所应助5433采纳,获得10
28秒前
太想进部了完成签到,获得积分10
29秒前
ruby完成签到,获得积分10
29秒前
jz525sndcr完成签到,获得积分10
30秒前
小雨完成签到,获得积分10
31秒前
冷酷的闹闹完成签到 ,获得积分10
31秒前
nk完成签到 ,获得积分10
32秒前
YY完成签到,获得积分10
32秒前
高高完成签到 ,获得积分10
34秒前
爱尚Coco应助liz采纳,获得10
35秒前
白子双完成签到,获得积分10
36秒前
36秒前
大_pan完成签到,获得积分10
37秒前
ljq完成签到,获得积分10
38秒前
38秒前
39秒前
qzt发布了新的文献求助10
40秒前
skysleeper完成签到,获得积分10
42秒前
Huimin完成签到,获得积分10
42秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257179
求助须知:如何正确求助?哪些是违规求助? 2899075
关于积分的说明 8303598
捐赠科研通 2568390
什么是DOI,文献DOI怎么找? 1395045
科研通“疑难数据库(出版商)”最低求助积分说明 652936
邀请新用户注册赠送积分活动 630683