物理
非线性系统
振幅
波浪和浅水
康德拉捷夫长波
Korteweg–de Vries方程
变量(数学)
机械
经典力学
数学分析
数学
光学
热力学
量子力学
作者
S. Leibovich,J.D. Randall
标识
DOI:10.1017/s0022112073002284
摘要
The interaction of weakly nonlinear waves with slowly varying boundaries is considered. Special emphasis is given to rotating fluids, but the analysis applies with minor modifications to waves in stratified fluids and shallow-water aves. An asymptotic solution of a variant of the Korteweg–de Vries equation with variable coefficients is developed that produces a ‘Green's law’ for the amplification of waves of finite amplitude. For shallow-water waves in water of variable depth, the result predicts wave growth proportional to the $-\frac{1}{3}$ power of the depth.
科研通智能强力驱动
Strongly Powered by AbleSci AI