Separator Design to Suppress Dendrite Growth in Lithium-Based Batteries

分离器(采油) 阳极 枝晶(数学) 材料科学 阴极 电流密度 电气工程 电极 化学 工程类 几何学 数学 量子力学 热力学 物理 物理化学
作者
Aniruddha Jana,David R. Ely,R. Edwin Garcı́a
出处
期刊:Meeting abstracts 卷期号:MA2015-01 (1): 34-34
标识
DOI:10.1149/ma2015-01/1/34
摘要

Lithium dendrites are metallic needle-like structures that electrodeposit on the anode of a battery during charging, and on further cycling, penetrate the intermediate polymeric separator layer, and internally short-circuit the battery. Dendritic growth in lithium-based batteries is known to cause battery failures, fires and other accidents. Dendrites in lithium-based batteries remain a critical challenge in graphite and lithium metal anodes for high current density applications. The growth of dendrites limits the current density inside the battery, which in turn limits the maximum power density that can be harnessed from the system. The problem of dendrites needs to be mitigated in order to maximize the power delivered by electric vehicles, and to realize the goal of matching performance of electric vehicles to that of gasoline driven vehicles. In this context, analyzing the effect of the pore size of polymer separators on dendrite growth is important. Traditionally, the problem of dendrite growth has been addressed by making separators thicker and more tortuous. However, such separators contribute to increased impedance losses in the battery, and do not completely suppress dendrite growth. In this study, using phase field models, the electrochemical interactions between the growing dendrite and the static separator are delineated. The objective is to find suitable separator morphologies and structures that are not necessarily thick or tortuous, yet can suppress or at least delay dendrite growth. The Allen-Cahn and Butler-Volmer equations are used to computationally observe the growth of the dendrite through the separator. Spatio-temporal electric fields and deposition/dissolution rates in the separator region are calculated during charging of the battery. It is shown that the growth of the dendrite is a result of two competing forces: the overpotential induced electrodeposition, and the surface tension induced electrodissolution. While high overpotentials cause the dendrite to grow, the curvature of the separator polymer structure imposes surface tension effects that dissolve the dendrite back into the electrolyte. Dendrite growth ceases when there is a dynamic balance between these two forces. Hence, a critical current density, below which dendrite growth can be suppressed, exists. Further, the critical current density can be expressed as a function of the separator pore size and the inclination of the separator channel. Using this concept of critical current density, several regimes of dendrite growth and suppression have been summarized in a map. The map can be used to select suitable separator morphologies for different current density applications (see Figure 1). Existing commercial separators and their ability to suppress dendrite can also be evaluated. In addition to proposing regimes of dendrite growth, the phenomenon of “dead lithium” formation, which is well reported in literature, has been captured and explained. Highly constricted separator channels, due to high surface tension forces, can cause a dendrite arm to dissolve and detach from the main dendrite, thus producing an offshoot of metallic lithium electrodeposit, known as “dead lithium” that floats in the electrolyte. The dead lithium experiences electrodeposition from the cathode side, while its back side, which faces the anode, gets dissolved due to lack of sufficient overpotential. This concurrent electrodeposition and electrodissolution on the two opposing faces create an apparent motion towards the cathode that causes the dead lithium to move, and to finally stick on the cathode surface, thus becoming a deleterious charge concentrator. AJ thanks the Lynn Fellowship Program at Purdue University. REG acknowledges grant DMR 1305634 for partial support. DRE thanks authorities at Ivy Tech Community College for support. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Z33zkZ发布了新的文献求助10
1秒前
风清扬应助社科狗采纳,获得50
5秒前
5秒前
Jasper应助坦率问玉采纳,获得10
6秒前
小蘑菇应助研友_Z33zkZ采纳,获得10
7秒前
静文完成签到,获得积分10
7秒前
澡雪发布了新的文献求助10
8秒前
半糖发布了新的文献求助10
9秒前
11秒前
12秒前
13秒前
15秒前
坦率问玉完成签到,获得积分10
16秒前
YanDongXu发布了新的文献求助10
16秒前
犀利狗发布了新的文献求助10
18秒前
18秒前
陈文学发布了新的文献求助10
19秒前
NexusExplorer应助猪猪hero采纳,获得30
20秒前
20秒前
123发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
毛豆爸爸发布了新的文献求助10
24秒前
25秒前
科研小学生完成签到,获得积分10
25秒前
犀利狗完成签到,获得积分10
26秒前
ChemPhys完成签到 ,获得积分10
27秒前
27秒前
Owen应助半糖采纳,获得10
28秒前
蔡婧瑶发布了新的文献求助10
29秒前
29秒前
30秒前
猪猪hero发布了新的文献求助10
31秒前
田田田田发布了新的文献求助10
31秒前
无花果应助粗心的胜采纳,获得10
32秒前
33秒前
小燕子完成签到,获得积分10
34秒前
35秒前
mogu应助科研通管家采纳,获得100
35秒前
猪猪hero发布了新的文献求助10
35秒前
yx_cheng应助科研通管家采纳,获得30
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975458
求助须知:如何正确求助?哪些是违规求助? 3519866
关于积分的说明 11199996
捐赠科研通 3256213
什么是DOI,文献DOI怎么找? 1798133
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305