Separator Design to Suppress Dendrite Growth in Lithium-Based Batteries

分离器(采油) 阳极 枝晶(数学) 材料科学 阴极 电流密度 电气工程 电极 化学 工程类 几何学 数学 量子力学 热力学 物理 物理化学
作者
Aniruddha Jana,David R. Ely,R. Edwin Garcı́a
出处
期刊:Meeting abstracts 卷期号:MA2015-01 (1): 34-34
标识
DOI:10.1149/ma2015-01/1/34
摘要

Lithium dendrites are metallic needle-like structures that electrodeposit on the anode of a battery during charging, and on further cycling, penetrate the intermediate polymeric separator layer, and internally short-circuit the battery. Dendritic growth in lithium-based batteries is known to cause battery failures, fires and other accidents. Dendrites in lithium-based batteries remain a critical challenge in graphite and lithium metal anodes for high current density applications. The growth of dendrites limits the current density inside the battery, which in turn limits the maximum power density that can be harnessed from the system. The problem of dendrites needs to be mitigated in order to maximize the power delivered by electric vehicles, and to realize the goal of matching performance of electric vehicles to that of gasoline driven vehicles. In this context, analyzing the effect of the pore size of polymer separators on dendrite growth is important. Traditionally, the problem of dendrite growth has been addressed by making separators thicker and more tortuous. However, such separators contribute to increased impedance losses in the battery, and do not completely suppress dendrite growth. In this study, using phase field models, the electrochemical interactions between the growing dendrite and the static separator are delineated. The objective is to find suitable separator morphologies and structures that are not necessarily thick or tortuous, yet can suppress or at least delay dendrite growth. The Allen-Cahn and Butler-Volmer equations are used to computationally observe the growth of the dendrite through the separator. Spatio-temporal electric fields and deposition/dissolution rates in the separator region are calculated during charging of the battery. It is shown that the growth of the dendrite is a result of two competing forces: the overpotential induced electrodeposition, and the surface tension induced electrodissolution. While high overpotentials cause the dendrite to grow, the curvature of the separator polymer structure imposes surface tension effects that dissolve the dendrite back into the electrolyte. Dendrite growth ceases when there is a dynamic balance between these two forces. Hence, a critical current density, below which dendrite growth can be suppressed, exists. Further, the critical current density can be expressed as a function of the separator pore size and the inclination of the separator channel. Using this concept of critical current density, several regimes of dendrite growth and suppression have been summarized in a map. The map can be used to select suitable separator morphologies for different current density applications (see Figure 1). Existing commercial separators and their ability to suppress dendrite can also be evaluated. In addition to proposing regimes of dendrite growth, the phenomenon of “dead lithium” formation, which is well reported in literature, has been captured and explained. Highly constricted separator channels, due to high surface tension forces, can cause a dendrite arm to dissolve and detach from the main dendrite, thus producing an offshoot of metallic lithium electrodeposit, known as “dead lithium” that floats in the electrolyte. The dead lithium experiences electrodeposition from the cathode side, while its back side, which faces the anode, gets dissolved due to lack of sufficient overpotential. This concurrent electrodeposition and electrodissolution on the two opposing faces create an apparent motion towards the cathode that causes the dead lithium to move, and to finally stick on the cathode surface, thus becoming a deleterious charge concentrator. AJ thanks the Lynn Fellowship Program at Purdue University. REG acknowledges grant DMR 1305634 for partial support. DRE thanks authorities at Ivy Tech Community College for support. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LI完成签到,获得积分20
1秒前
joni发布了新的文献求助10
1秒前
kyrrt完成签到,获得积分10
2秒前
Ethan完成签到,获得积分10
2秒前
去看海嘛应助lmgegege采纳,获得10
2秒前
ZHQ完成签到,获得积分20
2秒前
善学以致用应助抹茶肥肠采纳,获得10
2秒前
林荫下的熊完成签到,获得积分10
2秒前
cccc完成签到,获得积分10
3秒前
无限天空完成签到,获得积分20
3秒前
calm完成签到 ,获得积分10
3秒前
3秒前
扯犊子完成签到,获得积分10
4秒前
4秒前
Lucas应助廖元枫采纳,获得10
4秒前
鸡蛋饼波比完成签到 ,获得积分10
5秒前
唐隶完成签到,获得积分10
5秒前
Teng完成签到 ,获得积分10
5秒前
koala完成签到,获得积分10
5秒前
gy发布了新的文献求助10
6秒前
Hello应助粗暴的冰露采纳,获得10
6秒前
纯情的傲儿完成签到,获得积分10
8秒前
RUI完成签到,获得积分10
8秒前
8秒前
xh96完成签到,获得积分10
9秒前
ZHQ发布了新的文献求助10
9秒前
JR发布了新的文献求助10
10秒前
BetterH完成签到 ,获得积分10
10秒前
XH完成签到,获得积分10
10秒前
坚强亦丝应助勤劳的颤采纳,获得10
11秒前
wisdom完成签到,获得积分10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
12秒前
Ava应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
暮霭沉沉应助科研通管家采纳,获得10
13秒前
HEIKU应助科研通管家采纳,获得10
13秒前
动人的秋完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158860
求助须知:如何正确求助?哪些是违规求助? 2810040
关于积分的说明 7885599
捐赠科研通 2468890
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012