Separator Design to Suppress Dendrite Growth in Lithium-Based Batteries

分离器(采油) 阳极 枝晶(数学) 材料科学 阴极 电流密度 电气工程 电极 化学 工程类 物理 热力学 几何学 数学 物理化学 量子力学
作者
Aniruddha Jana,David R. Ely,R. Edwin Garcı́a
出处
期刊:Meeting abstracts 卷期号:MA2015-01 (1): 34-34
标识
DOI:10.1149/ma2015-01/1/34
摘要

Lithium dendrites are metallic needle-like structures that electrodeposit on the anode of a battery during charging, and on further cycling, penetrate the intermediate polymeric separator layer, and internally short-circuit the battery. Dendritic growth in lithium-based batteries is known to cause battery failures, fires and other accidents. Dendrites in lithium-based batteries remain a critical challenge in graphite and lithium metal anodes for high current density applications. The growth of dendrites limits the current density inside the battery, which in turn limits the maximum power density that can be harnessed from the system. The problem of dendrites needs to be mitigated in order to maximize the power delivered by electric vehicles, and to realize the goal of matching performance of electric vehicles to that of gasoline driven vehicles. In this context, analyzing the effect of the pore size of polymer separators on dendrite growth is important. Traditionally, the problem of dendrite growth has been addressed by making separators thicker and more tortuous. However, such separators contribute to increased impedance losses in the battery, and do not completely suppress dendrite growth. In this study, using phase field models, the electrochemical interactions between the growing dendrite and the static separator are delineated. The objective is to find suitable separator morphologies and structures that are not necessarily thick or tortuous, yet can suppress or at least delay dendrite growth. The Allen-Cahn and Butler-Volmer equations are used to computationally observe the growth of the dendrite through the separator. Spatio-temporal electric fields and deposition/dissolution rates in the separator region are calculated during charging of the battery. It is shown that the growth of the dendrite is a result of two competing forces: the overpotential induced electrodeposition, and the surface tension induced electrodissolution. While high overpotentials cause the dendrite to grow, the curvature of the separator polymer structure imposes surface tension effects that dissolve the dendrite back into the electrolyte. Dendrite growth ceases when there is a dynamic balance between these two forces. Hence, a critical current density, below which dendrite growth can be suppressed, exists. Further, the critical current density can be expressed as a function of the separator pore size and the inclination of the separator channel. Using this concept of critical current density, several regimes of dendrite growth and suppression have been summarized in a map. The map can be used to select suitable separator morphologies for different current density applications (see Figure 1). Existing commercial separators and their ability to suppress dendrite can also be evaluated. In addition to proposing regimes of dendrite growth, the phenomenon of “dead lithium” formation, which is well reported in literature, has been captured and explained. Highly constricted separator channels, due to high surface tension forces, can cause a dendrite arm to dissolve and detach from the main dendrite, thus producing an offshoot of metallic lithium electrodeposit, known as “dead lithium” that floats in the electrolyte. The dead lithium experiences electrodeposition from the cathode side, while its back side, which faces the anode, gets dissolved due to lack of sufficient overpotential. This concurrent electrodeposition and electrodissolution on the two opposing faces create an apparent motion towards the cathode that causes the dead lithium to move, and to finally stick on the cathode surface, thus becoming a deleterious charge concentrator. AJ thanks the Lynn Fellowship Program at Purdue University. REG acknowledges grant DMR 1305634 for partial support. DRE thanks authorities at Ivy Tech Community College for support. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助NXK采纳,获得10
1秒前
彩色诗云发布了新的文献求助10
2秒前
杰杰发布了新的文献求助10
3秒前
闪闪航空发布了新的文献求助10
5秒前
5秒前
6秒前
8秒前
8秒前
陈同学发布了新的文献求助10
8秒前
orixero应助77采纳,获得10
8秒前
8秒前
Akim应助彩色诗云采纳,获得10
9秒前
泡泡茶壶发布了新的文献求助10
10秒前
烟花应助科研通管家采纳,获得10
11秒前
zdl应助科研通管家采纳,获得30
11秒前
慕青应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
cmwlzhy应助科研通管家采纳,获得50
11秒前
11秒前
13秒前
13秒前
紫色翡翠完成签到,获得积分10
13秒前
ywhys完成签到,获得积分10
13秒前
老君完成签到,获得积分10
13秒前
曾123456发布了新的文献求助10
14秒前
牛马发布了新的文献求助50
15秒前
852应助joossss采纳,获得10
17秒前
18秒前
lixiaojin完成签到,获得积分20
18秒前
高大涵梅完成签到,获得积分20
19秒前
科研通AI2S应助Jiang采纳,获得10
19秒前
陈同学完成签到,获得积分10
20秒前
泡泡茶壶完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405424
求助须知:如何正确求助?哪些是违规求助? 4523745
关于积分的说明 14095053
捐赠科研通 4437438
什么是DOI,文献DOI怎么找? 2435688
邀请新用户注册赠送积分活动 1427810
关于科研通互助平台的介绍 1406086