Separator Design to Suppress Dendrite Growth in Lithium-Based Batteries

分离器(采油) 阳极 枝晶(数学) 材料科学 阴极 电流密度 电气工程 电极 化学 工程类 物理 热力学 几何学 数学 物理化学 量子力学
作者
Aniruddha Jana,David R. Ely,R. Edwin Garcı́a
出处
期刊:Meeting abstracts 卷期号:MA2015-01 (1): 34-34
标识
DOI:10.1149/ma2015-01/1/34
摘要

Lithium dendrites are metallic needle-like structures that electrodeposit on the anode of a battery during charging, and on further cycling, penetrate the intermediate polymeric separator layer, and internally short-circuit the battery. Dendritic growth in lithium-based batteries is known to cause battery failures, fires and other accidents. Dendrites in lithium-based batteries remain a critical challenge in graphite and lithium metal anodes for high current density applications. The growth of dendrites limits the current density inside the battery, which in turn limits the maximum power density that can be harnessed from the system. The problem of dendrites needs to be mitigated in order to maximize the power delivered by electric vehicles, and to realize the goal of matching performance of electric vehicles to that of gasoline driven vehicles. In this context, analyzing the effect of the pore size of polymer separators on dendrite growth is important. Traditionally, the problem of dendrite growth has been addressed by making separators thicker and more tortuous. However, such separators contribute to increased impedance losses in the battery, and do not completely suppress dendrite growth. In this study, using phase field models, the electrochemical interactions between the growing dendrite and the static separator are delineated. The objective is to find suitable separator morphologies and structures that are not necessarily thick or tortuous, yet can suppress or at least delay dendrite growth. The Allen-Cahn and Butler-Volmer equations are used to computationally observe the growth of the dendrite through the separator. Spatio-temporal electric fields and deposition/dissolution rates in the separator region are calculated during charging of the battery. It is shown that the growth of the dendrite is a result of two competing forces: the overpotential induced electrodeposition, and the surface tension induced electrodissolution. While high overpotentials cause the dendrite to grow, the curvature of the separator polymer structure imposes surface tension effects that dissolve the dendrite back into the electrolyte. Dendrite growth ceases when there is a dynamic balance between these two forces. Hence, a critical current density, below which dendrite growth can be suppressed, exists. Further, the critical current density can be expressed as a function of the separator pore size and the inclination of the separator channel. Using this concept of critical current density, several regimes of dendrite growth and suppression have been summarized in a map. The map can be used to select suitable separator morphologies for different current density applications (see Figure 1). Existing commercial separators and their ability to suppress dendrite can also be evaluated. In addition to proposing regimes of dendrite growth, the phenomenon of “dead lithium” formation, which is well reported in literature, has been captured and explained. Highly constricted separator channels, due to high surface tension forces, can cause a dendrite arm to dissolve and detach from the main dendrite, thus producing an offshoot of metallic lithium electrodeposit, known as “dead lithium” that floats in the electrolyte. The dead lithium experiences electrodeposition from the cathode side, while its back side, which faces the anode, gets dissolved due to lack of sufficient overpotential. This concurrent electrodeposition and electrodissolution on the two opposing faces create an apparent motion towards the cathode that causes the dead lithium to move, and to finally stick on the cathode surface, thus becoming a deleterious charge concentrator. AJ thanks the Lynn Fellowship Program at Purdue University. REG acknowledges grant DMR 1305634 for partial support. DRE thanks authorities at Ivy Tech Community College for support. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轩辕德地发布了新的文献求助10
1秒前
科研通AI2S应助jidou1011采纳,获得10
1秒前
魔幻的妖丽完成签到 ,获得积分10
2秒前
黄晓杰2024完成签到,获得积分10
3秒前
枫叶完成签到,获得积分10
4秒前
4秒前
5秒前
小二郎应助虚心盼晴采纳,获得10
5秒前
俊逸的盛男完成签到 ,获得积分10
5秒前
7秒前
脑洞疼应助枫叶采纳,获得10
8秒前
8秒前
Gyrate完成签到,获得积分10
9秒前
李李发布了新的文献求助50
9秒前
dashi完成签到 ,获得积分10
9秒前
无花果应助一天八杯水采纳,获得10
9秒前
9秒前
SS发布了新的文献求助10
10秒前
顺顺发布了新的文献求助10
11秒前
11秒前
11秒前
www发布了新的文献求助10
11秒前
12秒前
12秒前
李繁蕊发布了新的文献求助10
13秒前
暴躁的嘉懿完成签到,获得积分10
13秒前
LZH发布了新的文献求助20
13秒前
领导范儿应助rosexu采纳,获得10
14秒前
华生完成签到,获得积分10
15秒前
15秒前
Miracle关注了科研通微信公众号
15秒前
通~发布了新的文献求助10
16秒前
16秒前
Apple完成签到,获得积分10
16秒前
sunzhiyu233发布了新的文献求助10
17秒前
医学僧发布了新的文献求助30
17秒前
Sheila完成签到 ,获得积分10
17秒前
sweetbearm应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
NN应助科研通管家采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808