Object-based classification approach for greenhouse mapping using Landsat-8 imagery

温室 特征(语言学) 对象(语法) 特征选择 遥感 计算机科学 比例(比率) 支持向量机 随机森林 鉴定(生物学) 人工智能 数据挖掘 环境科学 模式识别(心理学) 地理 地图学 生态学 语言学 哲学 园艺 生物
作者
Chaofan Wu,Jinsong Deng,Ke Wang,Ligang Ma,Amir Reza Shah Tahmassebi
出处
期刊:International Journal of Agricultural and Biological Engineering [Chinese Society of Agricultural Engineering]
卷期号:9 (1): 79-88 被引量:53
标识
DOI:10.25165/ijabe.v9i1.1414
摘要

Suburban greenhouses with intensive agricultural productivity have increasingly influenced the daily diet and vegetable supply in Chinese cities. With their enormous input of fertilizers and pesticides, greenhouses have considerably changed the local soil quality and environmental risk factors. The ability to obtain timely and accurate information regarding the spatial distribution of greenhouses could make an important contribution to local agricultural management and soil protection. This paper attempts to present a practical framework for extracting suburban greenhouses, integrating remote sensing data from Landsat-8 and object-oriented classification. Inheritance classification was implemented, and various properties, including texture and neighborhood features in addition to spectral information, were investigated through the popular random forest technique for feature selection prior to SVM classification to improve the mapping accuracy. The results demonstrated that object-based classification incorporating non-spectral features yielded a significant improvement compared with the classification results obtained using only the spectral information in traditional per-pixel classification. Both the producer’s and user’s accuracy were higher than 85% for greenhouse identification. Although it remained a challenge to completely distinguish greenhouses from sparse plants, the final greenhouse map indicated that the proposed object-based classification scheme, providing multiple feature selections and multi-scale analysis, yielded worthwhile information when applied to a continuous series of the freely available Landsat-8 imagery data. Keywords: greenhouse, mapping, Landsat-8, object-based classification, feature selection, multi-scale DOI: 10.3965/j.ijabe.20160901.1414 Citation: Wu C F, Deng J S, Wang K, Ma L G, Tahmassebi A R S. Object-based classification approach for greenhouse mapping using Landsat-8 imagery. Int J Agric & Biol Eng, 2016; 9(1): 79-88.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SYLH应助Thunnus001采纳,获得50
刚刚
乐观的雅彤完成签到,获得积分10
刚刚
奥暖将完成签到,获得积分10
刚刚
朴实的凡阳完成签到,获得积分10
刚刚
1秒前
bkagyin应助自然有手就行采纳,获得10
1秒前
英姑应助haha采纳,获得30
1秒前
mj01完成签到,获得积分10
2秒前
2秒前
冰冰完成签到 ,获得积分10
2秒前
沄霄之上发布了新的文献求助10
2秒前
3秒前
Wayne完成签到,获得积分10
3秒前
4秒前
沐沐1003完成签到,获得积分10
4秒前
Hello应助gui采纳,获得10
4秒前
chenhua5460完成签到,获得积分10
4秒前
桥木有舟发布了新的文献求助10
5秒前
毛阳完成签到,获得积分10
5秒前
5秒前
6秒前
刘静发布了新的文献求助30
7秒前
危机的羽毛完成签到,获得积分10
7秒前
medhulang发布了新的文献求助10
8秒前
8秒前
anna1992发布了新的文献求助10
8秒前
林夏发布了新的文献求助10
9秒前
思源应助CC采纳,获得10
9秒前
9秒前
慕航完成签到,获得积分10
10秒前
memo完成签到,获得积分10
10秒前
lmy发布了新的文献求助30
10秒前
李爱国应助派大星采纳,获得10
11秒前
蜡笔小新发布了新的文献求助10
11秒前
Haley完成签到,获得积分10
11秒前
孙福禄应助沄霄之上采纳,获得10
11秒前
慕青应助沄霄之上采纳,获得10
12秒前
无情白羊完成签到,获得积分20
12秒前
自觉的白亦完成签到,获得积分20
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582