Object-based classification approach for greenhouse mapping using Landsat-8 imagery

温室 特征(语言学) 对象(语法) 特征选择 遥感 计算机科学 比例(比率) 支持向量机 随机森林 鉴定(生物学) 人工智能 数据挖掘 环境科学 模式识别(心理学) 地理 地图学 生态学 语言学 哲学 园艺 生物
作者
Chaofan Wu,Jinsong Deng,Ke Wang,Ligang Ma,Amir Reza Shah Tahmassebi
出处
期刊:International Journal of Agricultural and Biological Engineering 卷期号:9 (1): 79-88 被引量:53
标识
DOI:10.25165/ijabe.v9i1.1414
摘要

Suburban greenhouses with intensive agricultural productivity have increasingly influenced the daily diet and vegetable supply in Chinese cities. With their enormous input of fertilizers and pesticides, greenhouses have considerably changed the local soil quality and environmental risk factors. The ability to obtain timely and accurate information regarding the spatial distribution of greenhouses could make an important contribution to local agricultural management and soil protection. This paper attempts to present a practical framework for extracting suburban greenhouses, integrating remote sensing data from Landsat-8 and object-oriented classification. Inheritance classification was implemented, and various properties, including texture and neighborhood features in addition to spectral information, were investigated through the popular random forest technique for feature selection prior to SVM classification to improve the mapping accuracy. The results demonstrated that object-based classification incorporating non-spectral features yielded a significant improvement compared with the classification results obtained using only the spectral information in traditional per-pixel classification. Both the producer’s and user’s accuracy were higher than 85% for greenhouse identification. Although it remained a challenge to completely distinguish greenhouses from sparse plants, the final greenhouse map indicated that the proposed object-based classification scheme, providing multiple feature selections and multi-scale analysis, yielded worthwhile information when applied to a continuous series of the freely available Landsat-8 imagery data. Keywords: greenhouse, mapping, Landsat-8, object-based classification, feature selection, multi-scale DOI: 10.3965/j.ijabe.20160901.1414 Citation: Wu C F, Deng J S, Wang K, Ma L G, Tahmassebi A R S. Object-based classification approach for greenhouse mapping using Landsat-8 imagery. Int J Agric & Biol Eng, 2016; 9(1): 79-88.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
w_sea应助水云间采纳,获得10
4秒前
zpp完成签到 ,获得积分10
4秒前
5秒前
鱼饼完成签到 ,获得积分10
6秒前
Ava应助cc2001采纳,获得10
6秒前
9秒前
西瓜大虫发布了新的文献求助200
12秒前
Owen应助任梓宁采纳,获得10
13秒前
14秒前
zz完成签到 ,获得积分10
15秒前
16秒前
16秒前
青花完成签到,获得积分10
17秒前
健壮的访曼应助十一采纳,获得10
18秒前
隐形曼青应助罗博超采纳,获得10
19秒前
cc2001发布了新的文献求助10
20秒前
不懈奋进应助Wason采纳,获得30
20秒前
21秒前
21秒前
研究牲发布了新的文献求助10
22秒前
pb完成签到 ,获得积分10
23秒前
23秒前
青山完成签到 ,获得积分10
24秒前
任梓宁发布了新的文献求助10
25秒前
春风过客发布了新的文献求助10
26秒前
酷酷发布了新的文献求助10
31秒前
mm完成签到,获得积分10
32秒前
32秒前
任梓宁完成签到,获得积分10
32秒前
春风过客完成签到,获得积分10
32秒前
研友_VZG7GZ应助溪秋白采纳,获得10
33秒前
自由自在完成签到,获得积分10
36秒前
scoot发布了新的文献求助10
37秒前
Ly啦啦啦完成签到,获得积分10
37秒前
bkagyin应助Phoenix ZHANG采纳,获得10
38秒前
39秒前
科研小白完成签到,获得积分10
39秒前
yifanchen应助邢大宝采纳,获得10
40秒前
在水一方应助酷酷采纳,获得10
42秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329559
求助须知:如何正确求助?哪些是违规求助? 2959152
关于积分的说明 8594441
捐赠科研通 2637675
什么是DOI,文献DOI怎么找? 1443672
科研通“疑难数据库(出版商)”最低求助积分说明 668794
邀请新用户注册赠送积分活动 656231