Variable Selection for Propensity Score Models

混淆 统计 差异(会计) 选择偏差 倾向得分匹配 计量经济学 对比度(视觉) 均方误差 解释的变化 结果(博弈论) 流行病学 变量 变量(数学) 选择(遗传算法) 数学 医学 计算机科学 经济 内科学 数学分析 会计 数理经济学 人工智能
作者
M. Alan Brookhart,Sebastian Schneeweiß,Kenneth J. Rothman,Robert J. Glynn,Jerry Avorn,Til Stürmer‎
出处
期刊:American Journal of Epidemiology [Oxford University Press]
卷期号:163 (12): 1149-1156 被引量:1938
标识
DOI:10.1093/aje/kwj149
摘要

Despite the growing popularity of propensity score (PS) methods in epidemiology, relatively little has been written in the epidemiologic literature about the problem of variable selection for PS models. The authors present the results of two simulation studies designed to help epidemiologists gain insight into the variable selection problem in a PS analysis. The simulation studies illustrate how the choice of variables that are included in a PS model can affect the bias, variance, and mean squared error of an estimated exposure effect. The results suggest that variables that are unrelated to the exposure but related to the outcome should always be included in a PS model. The inclusion of these variables will decrease the variance of an estimated exposure effect without increasing bias. In contrast, including variables that are related to the exposure but not to the outcome will increase the variance of the estimated exposure effect without decreasing bias. In very small studies, the inclusion of variables that are strongly related to the exposure but only weakly related to the outcome can be detrimental to an estimate in a mean squared error sense. The addition of these variables removes only a small amount of bias but can increase the variance of the estimated exposure effect. These simulation studies and other analytical results suggest that standard model-building tools designed to create good predictive models of the exposure will not always lead to optimal PS models, particularly in small studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tangyan完成签到,获得积分10
1秒前
小知了发布了新的文献求助10
1秒前
2秒前
无花果应助坦率的草丛采纳,获得10
2秒前
感动的煜城完成签到,获得积分10
3秒前
litianqi完成签到,获得积分10
3秒前
木槿花难开完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
WenTang发布了新的文献求助10
6秒前
藿馨儿发布了新的文献求助10
6秒前
共享精神应助冷漠的布丁采纳,获得10
6秒前
JuTou完成签到,获得积分10
6秒前
7秒前
mini完成签到,获得积分10
7秒前
小马甲应助奇遇采纳,获得30
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
香蕉觅云应助litianqi采纳,获得30
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
HAHAH发布了新的文献求助10
8秒前
bkagyin应助科研通管家采纳,获得50
8秒前
8秒前
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
8秒前
小超完成签到,获得积分10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
xzy998应助科研通管家采纳,获得10
8秒前
9秒前
bkagyin应助hanchangcun采纳,获得10
9秒前
ltxinanjiao发布了新的文献求助10
9秒前
10秒前
TGH发布了新的文献求助10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951532
求助须知:如何正确求助?哪些是违规求助? 3496928
关于积分的说明 11085323
捐赠科研通 3227364
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868444
科研通“疑难数据库(出版商)”最低求助积分说明 801139