棱锥(几何)
人工智能
计算机科学
尺度不变特征变换
直方图
分类
模式识别(心理学)
代表(政治)
计算机视觉
匹配(统计)
计算机视觉中的词袋模型
图像(数学)
场景统计
文字袋模型
视觉文字
图像检索
数学
统计
几何学
神经科学
政治
政治学
法学
感知
生物
作者
Svetlana Lazebnik,C. Schmid,Jean Ponce
摘要
This paper presents a method for recognizing scene categories based on approximate global geometric correspondence. This technique works by partitioning the image into increasingly fine sub-regions and computing histograms of local features found inside each sub-region. The resulting "spatial pyramid" is a simple and computationally efficient extension of an orderless bag-of-features image representation, and it shows significantly improved performance on challenging scene categorization tasks. Specifically, our proposed method exceeds the state of the art on the Caltech-101 database and achieves high accuracy on a large database of fifteen natural scene categories. The spatial pyramid framework also offers insights into the success of several recently proposed image descriptions, including Torralba’s "gist" and Lowe’s SIFT descriptors.
科研通智能强力驱动
Strongly Powered by AbleSci AI