Automatic Control of Veno‐Venous Extracorporeal Lung Assist

体外 二氧化碳去除 人工肺 麻醉 医学 呼吸衰竭 体外循环 分压 急性呼吸窘迫
作者
Rüdger Kopp,Ralf Bensberg,André Stollenwerk,Jutta Arens,Oliver Grottke,Marian Walter,Rolf Rossaint
出处
期刊:Artificial Organs [Wiley]
卷期号:40 (10): 992-998 被引量:12
标识
DOI:10.1111/aor.12664
摘要

Abstract Veno‐venous extracorporeal lung assist ( ECLA ) can provide sufficient gas exchange even in most severe cases of acute respiratory distress syndrome. Commercially available systems are manually controlled, although an automatically controlled ECLA could allow individualized and continuous adaption to clinical requirements. Therefore, we developed a demonstrator with an integrated control algorithm to keep continuously measured peripheral oxygen saturation and partial pressure of carbon dioxide constant by automatically adjusting extracorporeal blood and gas flow. The “ SmartECLA ” system was tested in six animal experiments with increasing pulmonary hypoventilation and hypoxic inspiratory gas mixture to simulate progressive acute respiratory failure. During a cumulative evaluation time of 32 h for all experiments, automatic ECLA control resulted in a peripheral oxygen saturation ≥90% for 98% of the time with the lowest value of 82% for 15 s. Partial pressure of venous carbon dioxide was between 40 and 49 mm H g for 97% of the time with no value <35 mm H g or >49 mm H g. With decreasing inspiratory oxygen concentration, extracorporeal oxygen uptake increased from 68 ± 25 to 154 ± 34 mL/min ( P < 0.05), and reducing respiratory rate resulted in increasing extracorporeal carbon dioxide elimination from 71 ± 37 to 92 ± 37 mL/min ( P < 0.05). The “ SmartECLA ” demonstrator allowed reliable automatic control of the extracorporeal circuit. Proof of concept could be demonstrated for this novel automatically controlled veno‐venous ECLA circuit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
accept完成签到,获得积分10
刚刚
刚刚
研友_VZG7GZ应助暗香采纳,获得20
1秒前
浦肯野应助深情元蝶采纳,获得80
1秒前
CipherSage应助深情元蝶采纳,获得10
1秒前
123完成签到,获得积分10
2秒前
Endymion发布了新的文献求助10
2秒前
00发布了新的文献求助10
2秒前
xi发布了新的文献求助10
3秒前
3秒前
pluto应助简单的期待采纳,获得30
4秒前
大模型应助xuxuxu采纳,获得10
4秒前
文竹完成签到,获得积分10
5秒前
6秒前
李健的小迷弟应助jiap1120采纳,获得10
7秒前
面条完成签到,获得积分10
8秒前
wanci应助Endymion采纳,获得10
8秒前
10秒前
10秒前
思源应助科研通管家采纳,获得10
11秒前
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
lll关闭了lll文献求助
11秒前
15秒前
夕赣发布了新的文献求助10
15秒前
17秒前
17秒前
18秒前
李浩然发布了新的文献求助10
18秒前
搜集达人应助健忘的金采纳,获得10
18秒前
19秒前
AIR关注了科研通微信公众号
19秒前
小二郎应助小怪兽采纳,获得10
19秒前
吴海强发布了新的文献求助10
21秒前
Dou完成签到,获得积分10
22秒前
枯叶蝶完成签到,获得积分10
22秒前
l2385865294发布了新的文献求助10
23秒前
暗香发布了新的文献求助20
23秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475840
求助须知:如何正确求助?哪些是违规求助? 3067547
关于积分的说明 9104650
捐赠科研通 2759116
什么是DOI,文献DOI怎么找? 1513963
邀请新用户注册赠送积分活动 699928
科研通“疑难数据库(出版商)”最低求助积分说明 699204