Two-stage model of memory trace formation: A role for “noisy” brain states

神经科学 突触后电位 爆裂 下托 去极化 人口 长时程增强 锥体细胞 抑制性突触后电位 海马体 心理学 化学 齿状回 生物 生物物理学 医学 受体 环境卫生 生物化学
作者
György Buzsáki
出处
期刊:Neuroscience [Elsevier]
卷期号:31 (3): 551-570 被引量:1661
标识
DOI:10.1016/0306-4522(89)90423-5
摘要

Review of the normally occurring neuronal patterns of the hippocampus suggests that the two principal cell types of the hippocampus, the pyramidal neurons and granule cells, are maximally active during different behaviors. Granule cells reach their highest discharge rates during theta-concurrent exploratory activities, while population synchrony of pyramidal cells is maximum during immobility, consummatory behaviors, and slow wave sleep associated with field sharp waves. Sharp waves reflect the summed postsynaptic depolarization of large numbers of pyramidal cells in the CA1 and subiculum as a consequence of synchronous discharge of bursting CA3 pyramidal neurons. The trigger for the population burst in the CA3 region is the temporary release from subcortical tonic inhibition. An overview of the experimentally explored criteria of synaptic enhancement (intensity, frequency, and pattern of postsynaptic depolarization, calcium influx, cooperativity, threshold) suggests that these requirements may be present during sharp wave-concurrent population bursts of pyramidal cells. Experimental evidence is cited showing that (a) population bursts in CA3 may lead to long-term potentiation in their postsynaptic CA1 targets, (b) tetanizing stimuli are capable of increasing the synchrony of the sharp wave-burst, and (c) activity patterns of the neocortical input to the hippocampus determine which subgroup of CA3 neurons will trigger subsequently occurring population bursts (initiator cells). Based on the experimental evidence reviewed a formal model of memory trace formation is outlined. During exploratory (theta) behaviors the neocortical information is transmitted to the hippocampus via the fast-firing granule cells which may induce a weak and transient heterosynaptic potentiation in a subgroup of CA3 pyramidal cells. The weakly potentiated CA3 neurons will then initiate population bursts upon the termination of exploratory activity (sharp wave state). It is assumed that recurrent excitation during the population burst is strongest on those cells which initiated the population event. It is suggested that the strong excitatory drive brought about by the sharp wave-concurrent population bursts during consummatory behaviors, immobility, and slow wave sleep may be sufficient for the induction of long-term synaptic modification in the initiator neurons of the CA3 region and in their targets in CA1. In this two-stage model both exploratory (theta) and sharp wave states of the hippocampus are essential and any interference that might modify the structure of the population bursts (e.g. epileptic spikes) is detrimental to memory trace formation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熙可檬发布了新的文献求助10
1秒前
1秒前
我师傅不是好人完成签到,获得积分10
1秒前
1秒前
zjw1997发布了新的文献求助30
2秒前
大个应助superming采纳,获得10
2秒前
完美羿完成签到,获得积分10
2秒前
2秒前
duwang完成签到,获得积分10
3秒前
3秒前
鄙视注册完成签到,获得积分0
3秒前
风华发布了新的文献求助10
3秒前
3秒前
4秒前
Robin发布了新的文献求助10
4秒前
现代半山完成签到 ,获得积分10
4秒前
思源应助888采纳,获得10
5秒前
5秒前
科研通AI6应助康康采纳,获得10
5秒前
Tina完成签到,获得积分10
5秒前
zwx发布了新的文献求助10
5秒前
香菜发布了新的文献求助10
5秒前
12138完成签到,获得积分10
6秒前
听话的炳完成签到,获得积分20
6秒前
6秒前
7秒前
耍酷的婴发布了新的文献求助10
7秒前
科研通AI6应助mochen采纳,获得10
7秒前
7秒前
zhou发布了新的文献求助10
8秒前
搞怪的萃发布了新的文献求助10
9秒前
kopp发布了新的文献求助10
9秒前
Jared应助wuran采纳,获得10
9秒前
10秒前
zeta发布了新的文献求助10
10秒前
11秒前
小张z完成签到,获得积分10
11秒前
青柚子完成签到,获得积分10
11秒前
12秒前
chai发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320