Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)

膨胀 海况 风浪 地质学 电磁频谱 海底管道 气象学 波高 有效波高 波数 谱线 衰减 表面波 源函数 散射 物理 光学 海洋学 天体物理学 天文
作者
Klaus Hasselmann,T. P. Barnett,E. Bouws,H.E. Carlson,David E. Cartwright,K. Enke,J. A. Ewing,Hans Gienapp,Dieter Hasselmann,P. Kruseman,A. Meerburg,P. Müller,Dirk Olbers,K. Richter,W. Sell,H. Walden
摘要

Wave spectra were measured along a profile extending 160 kilometers into the North Sea westward from Sylt for a period often weeks in 1968 and 1969. During the main experiment in July 1969, thirteen wave stations were in operation, of which six stations continued measurements into the first two weeks of August. A smaller pilot experiment was carried out in September 1968. Currents, tides, air-sea temperature differences and turbulence in the atmospheric boundary layer were also measured. The goal of the experiment (described in Part 1) was to determine the structure of the source function governing the energy balance of the wave spectrum, with particular emphasis on wave growth under stationary offshore wind conditions (Part 2) and the attenuation of swell in water of finite depth (Part 3). The source functions of wave spectra generated by offshore winds exhibit a characteristic plus-minus signature associated with the shift of the sharp spectral peak towards lower frequencies. The two-lobed distribution of the source function can be explained quantitatively by the nonlinear transfer due to resonant wave-wave interactions (second order Bragg scattering). The evolution of a pronounced peak and its shift towards lower frequencies can also be understood as a selfstabilizing feature of this process. For small fetches, the principal energy balance is between the input by wind in the central region of the spectrum and the nonlinear transfer of energy away from this region to short waves, where it is dissipated, and to longer waves. Most of the wave growth on the forward face of the spectrum can be attributed to the nonlinear transfer to longer waves. For short fetches, approximately (80 ± 20) % of the momentum transferred across the air/sea interface enters the wave field, in agreement with Dobson's direct measurements of the work done on the waves by surface pressures. About 80-90 % of the wave-induced momentum flux passes into currents via the nonlinear transfer to short waves and subsequent dissipation; the rest remains in the wave field and is advected away. At larger fetches the interpretation of the energy balance becomes more ambiguous on account of the unknown dissipation in the low-frequency part of the spectrum. Zero dissipation in this frequency range yields a minimal atmospheric momentum flux into the wave field of the order of (10 to 40) % of the total momentum transfer across the air-sea interface -- but ratios up to 100 % are conceivable if dissipation is important. In general, the ratios (as inferred from the nonlinear energy transfer) lie within these limits over a wide (five-decade) range of fetches encompassing both wave-tank and the present field data, suggesting that the scales of the spectrum continually adjust such that the wave-wave interactions just balance the energy input from the wind. This may explain, among other features, the observed decrease of Phillips' constant with fetch. The decay rates determined for incoming swell varied considerably, but energy attenuation factors of two along the length of the profile were typical. This is in order of magnitude agreement with expected damping rates due to bottom friction. However, the strong tidal modulation predicted by theory for the case of a quadratic bottom friction law was not observed. Adverse winds did not affect the decay rate. Computations also rule out wave-wave interactions or dissipation due to turbulence outside the bottom boundary layer as effective mechanisms of swell attenuation. We conclude that either the generally accepted friction law needs to be significantly modified or that some other mechanism, such as scattering by bottom irregularities, is the cause of the attenuation. The dispersion characteristics of the swells indicated rather nearby origins, for which the classical (i event model was generally inapplicable. A strong Doppler modulation by tidal currents was also observed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助椰子采纳,获得10
1秒前
sunshine发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
Singularity应助wxy采纳,获得10
5秒前
领导范儿应助周凡淇采纳,获得10
6秒前
秘小先儿应助周凡淇采纳,获得10
6秒前
Liufgui应助周凡淇采纳,获得10
6秒前
科研通AI2S应助周凡淇采纳,获得10
6秒前
酷炫的毛巾应助周凡淇采纳,获得10
6秒前
Singularity应助周凡淇采纳,获得10
6秒前
oh应助周凡淇采纳,获得10
6秒前
NexusExplorer应助周凡淇采纳,获得10
6秒前
寂寞的雨柏完成签到 ,获得积分20
6秒前
科研怪发布了新的文献求助10
6秒前
Owen应助西子阳采纳,获得10
7秒前
8秒前
poplyx发布了新的文献求助10
9秒前
10秒前
璐璐完成签到 ,获得积分10
10秒前
科研乞丐应助cccccl采纳,获得20
11秒前
wangyang完成签到 ,获得积分10
11秒前
13秒前
13秒前
曾小莹完成签到,获得积分10
13秒前
14秒前
14秒前
17秒前
cc完成签到,获得积分10
17秒前
dian发布了新的文献求助10
17秒前
杜本内完成签到,获得积分10
18秒前
19秒前
温暖宛筠发布了新的文献求助10
19秒前
1111发布了新的文献求助10
21秒前
打打应助十点差一分采纳,获得10
21秒前
22秒前
cherry完成签到,获得积分20
22秒前
bkagyin应助整齐的雨采纳,获得10
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999495
求助须知:如何正确求助?哪些是违规求助? 3538942
关于积分的说明 11275419
捐赠科研通 3277782
什么是DOI,文献DOI怎么找? 1807668
邀请新用户注册赠送积分活动 884011
科研通“疑难数据库(出版商)”最低求助积分说明 810111