Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry

有限元法 固定装置 应变计 涡轮叶片 流离失所(心理学) 结构工程 结构健康监测 振动器 涡轮机 位移场 工程类 悬臂梁 声学 振动 机械工程 物理 心理治疗师 心理学
作者
Javad Baqersad,Christopher Niezrecki,Peter Avitabile
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:62-63: 284-295 被引量:88
标识
DOI:10.1016/j.ymssp.2015.03.021
摘要

Health monitoring of rotating structures (e.g. wind turbines and helicopter blades) has historically been a challenge due to sensing and data transmission problems. Unfortunately mechanical failure in many structures initiates at components on or inside the structure where there is no sensor located to predict the failure. In this paper, a wind turbine was mounted with a semi-built-in configuration and was excited using a mechanical shaker. A series of optical targets was distributed along the blades and the fixture and the displacement of those targets during excitation was measured using a pair of high speed cameras. Measured displacements with three dimensional point tracking were transformed to all finite element degrees of freedom using a modal expansion algorithm. The expanded displacements were applied to the finite element model to predict the full-field dynamic strain on the surface of the structure as well as within the interior points. To validate the methodology of dynamic strain prediction, the predicted strain was compared to measured strain by using six mounted strain-gages. To verify if a simpler model of the turbine can be used for the expansion, the expansion process was performed both by using the modes of the entire turbine and modes of a single cantilever blade. The results indicate that the expansion approach can accurately predict the strain throughout the turbine blades from displacements measured by using stereophotogrammetry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助Xerxez采纳,获得10
1秒前
伞下铭发布了新的文献求助10
2秒前
领导范儿应助zppp采纳,获得10
2秒前
3秒前
王佳亮完成签到,获得积分10
3秒前
zenzi完成签到,获得积分20
4秒前
小雨完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
1an完成签到,获得积分10
6秒前
Nancy发布了新的文献求助10
6秒前
青青松树枝完成签到,获得积分10
6秒前
瘦瘦发布了新的文献求助20
6秒前
汉堡包应助不医人采纳,获得10
7秒前
小雨发布了新的文献求助10
8秒前
爆米花应助Steven采纳,获得10
8秒前
8秒前
newnew完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
ding应助磐xst采纳,获得10
12秒前
原野完成签到,获得积分10
12秒前
科研通AI6应助Nancy采纳,获得10
12秒前
12秒前
huilin发布了新的文献求助10
12秒前
13秒前
niNe3YUE应助薄荷采纳,获得10
13秒前
13秒前
何木萧完成签到,获得积分10
13秒前
丫丫完成签到,获得积分10
15秒前
Ava应助缥缈傥采纳,获得10
15秒前
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
huilin完成签到,获得积分10
18秒前
wenjing发布了新的文献求助10
19秒前
aaa发布了新的文献求助10
19秒前
是个哑巴完成签到,获得积分10
19秒前
Chicophy发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002