Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry

有限元法 固定装置 应变计 涡轮叶片 流离失所(心理学) 结构工程 结构健康监测 振动器 涡轮机 位移场 工程类 悬臂梁 声学 振动 机械工程 物理 心理治疗师 心理学
作者
Javad Baqersad,Christopher Niezrecki,Peter Avitabile
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:62-63: 284-295 被引量:88
标识
DOI:10.1016/j.ymssp.2015.03.021
摘要

Health monitoring of rotating structures (e.g. wind turbines and helicopter blades) has historically been a challenge due to sensing and data transmission problems. Unfortunately mechanical failure in many structures initiates at components on or inside the structure where there is no sensor located to predict the failure. In this paper, a wind turbine was mounted with a semi-built-in configuration and was excited using a mechanical shaker. A series of optical targets was distributed along the blades and the fixture and the displacement of those targets during excitation was measured using a pair of high speed cameras. Measured displacements with three dimensional point tracking were transformed to all finite element degrees of freedom using a modal expansion algorithm. The expanded displacements were applied to the finite element model to predict the full-field dynamic strain on the surface of the structure as well as within the interior points. To validate the methodology of dynamic strain prediction, the predicted strain was compared to measured strain by using six mounted strain-gages. To verify if a simpler model of the turbine can be used for the expansion, the expansion process was performed both by using the modes of the entire turbine and modes of a single cantilever blade. The results indicate that the expansion approach can accurately predict the strain throughout the turbine blades from displacements measured by using stereophotogrammetry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ykiiii完成签到,获得积分10
1秒前
怕孤独的广缘完成签到 ,获得积分10
1秒前
风色四叶草完成签到,获得积分10
1秒前
李爱国应助atl采纳,获得10
1秒前
fangzhang发布了新的文献求助10
1秒前
董鑫完成签到,获得积分10
2秒前
大壮完成签到,获得积分10
2秒前
lee1992完成签到,获得积分10
3秒前
萂昕完成签到 ,获得积分10
3秒前
英姑应助斐波拉切土豆采纳,获得10
3秒前
风中莫英发布了新的文献求助10
4秒前
小依爱摸鱼完成签到,获得积分10
4秒前
在水一方应助洪悦冰采纳,获得30
4秒前
烤鸭卷饼完成签到,获得积分10
5秒前
BYN完成签到 ,获得积分10
5秒前
义气尔芙完成签到,获得积分10
5秒前
最好是完成签到,获得积分10
6秒前
Gaoge完成签到,获得积分10
7秒前
xinran_lv完成签到,获得积分10
7秒前
情怀应助abab小王采纳,获得10
7秒前
7秒前
8秒前
罂粟完成签到,获得积分10
8秒前
生而狂野天逸完成签到,获得积分10
9秒前
单身的淇完成签到 ,获得积分10
9秒前
Rsoup完成签到,获得积分10
9秒前
不善良完成签到 ,获得积分10
10秒前
lxl完成签到,获得积分10
11秒前
石榴脆莆完成签到,获得积分10
11秒前
hhpxxy完成签到,获得积分10
11秒前
橘子海完成签到 ,获得积分10
12秒前
范森林完成签到 ,获得积分10
12秒前
如你所liao完成签到,获得积分10
13秒前
阳炎完成签到,获得积分10
13秒前
曾经碧蓉完成签到,获得积分10
13秒前
办公的牛马完成签到,获得积分10
13秒前
Pengcheng完成签到,获得积分10
13秒前
笑嘻嘻完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645277
求助须知:如何正确求助?哪些是违规求助? 4768340
关于积分的说明 15027650
捐赠科研通 4803859
什么是DOI,文献DOI怎么找? 2568523
邀请新用户注册赠送积分活动 1525813
关于科研通互助平台的介绍 1485484