亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry

有限元法 固定装置 应变计 涡轮叶片 流离失所(心理学) 结构工程 结构健康监测 振动器 涡轮机 位移场 工程类 悬臂梁 声学 振动 机械工程 物理 心理治疗师 心理学
作者
Javad Baqersad,Christopher Niezrecki,Peter Avitabile
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:62-63: 284-295 被引量:88
标识
DOI:10.1016/j.ymssp.2015.03.021
摘要

Health monitoring of rotating structures (e.g. wind turbines and helicopter blades) has historically been a challenge due to sensing and data transmission problems. Unfortunately mechanical failure in many structures initiates at components on or inside the structure where there is no sensor located to predict the failure. In this paper, a wind turbine was mounted with a semi-built-in configuration and was excited using a mechanical shaker. A series of optical targets was distributed along the blades and the fixture and the displacement of those targets during excitation was measured using a pair of high speed cameras. Measured displacements with three dimensional point tracking were transformed to all finite element degrees of freedom using a modal expansion algorithm. The expanded displacements were applied to the finite element model to predict the full-field dynamic strain on the surface of the structure as well as within the interior points. To validate the methodology of dynamic strain prediction, the predicted strain was compared to measured strain by using six mounted strain-gages. To verify if a simpler model of the turbine can be used for the expansion, the expansion process was performed both by using the modes of the entire turbine and modes of a single cantilever blade. The results indicate that the expansion approach can accurately predict the strain throughout the turbine blades from displacements measured by using stereophotogrammetry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuliu发布了新的文献求助10
刚刚
嘻嘻哈哈应助迷人的天抒采纳,获得10
5秒前
12秒前
16秒前
19秒前
liuliu完成签到,获得积分20
22秒前
30秒前
kuku发布了新的文献求助10
35秒前
40秒前
43秒前
51秒前
52秒前
56秒前
ceeray23发布了新的文献求助20
58秒前
爱听歌凤灵完成签到 ,获得积分10
59秒前
迷人的天抒完成签到,获得积分10
1分钟前
1分钟前
1分钟前
可爱的函函应助kuku采纳,获得10
1分钟前
1分钟前
1分钟前
Shawn发布了新的文献求助10
1分钟前
木有完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
珀拉瑞丝应助oleskarabach采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
haoyooo完成签到 ,获得积分10
1分钟前
科研通AI6应助坚定汝燕采纳,获得10
1分钟前
qjd发布了新的文献求助10
1分钟前
英俊的铭应助oleskarabach采纳,获得10
1分钟前
火星上含芙完成签到 ,获得积分10
1分钟前
打打应助qjd采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
英姑应助坚定汝燕采纳,获得10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
ho应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376359
求助须知:如何正确求助?哪些是违规求助? 4501480
关于积分的说明 14013086
捐赠科研通 4409259
什么是DOI,文献DOI怎么找? 2422122
邀请新用户注册赠送积分活动 1414945
关于科研通互助平台的介绍 1391803