Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry

有限元法 固定装置 应变计 涡轮叶片 流离失所(心理学) 结构工程 结构健康监测 振动器 涡轮机 位移场 工程类 悬臂梁 声学 振动 机械工程 物理 心理治疗师 心理学
作者
Javad Baqersad,Christopher Niezrecki,Peter Avitabile
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:62-63: 284-295 被引量:88
标识
DOI:10.1016/j.ymssp.2015.03.021
摘要

Health monitoring of rotating structures (e.g. wind turbines and helicopter blades) has historically been a challenge due to sensing and data transmission problems. Unfortunately mechanical failure in many structures initiates at components on or inside the structure where there is no sensor located to predict the failure. In this paper, a wind turbine was mounted with a semi-built-in configuration and was excited using a mechanical shaker. A series of optical targets was distributed along the blades and the fixture and the displacement of those targets during excitation was measured using a pair of high speed cameras. Measured displacements with three dimensional point tracking were transformed to all finite element degrees of freedom using a modal expansion algorithm. The expanded displacements were applied to the finite element model to predict the full-field dynamic strain on the surface of the structure as well as within the interior points. To validate the methodology of dynamic strain prediction, the predicted strain was compared to measured strain by using six mounted strain-gages. To verify if a simpler model of the turbine can be used for the expansion, the expansion process was performed both by using the modes of the entire turbine and modes of a single cantilever blade. The results indicate that the expansion approach can accurately predict the strain throughout the turbine blades from displacements measured by using stereophotogrammetry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助123456qi采纳,获得10
刚刚
SR完成签到,获得积分10
刚刚
刚刚
刚刚
顾矜应助姿姿采纳,获得10
刚刚
科目三应助梅竹采纳,获得10
1秒前
曹志毅发布了新的文献求助20
1秒前
one发布了新的文献求助10
1秒前
wang完成签到,获得积分10
1秒前
Hilda007应助vivre223采纳,获得10
2秒前
mochen完成签到,获得积分10
2秒前
科目三应助没有昵称采纳,获得10
2秒前
西西完成签到,获得积分10
2秒前
朱妙彤发布了新的文献求助10
2秒前
赵鑫宇发布了新的文献求助10
3秒前
3秒前
烟花应助鲤鱼灵寒采纳,获得10
3秒前
盒子完成签到,获得积分10
3秒前
菜菜发布了新的文献求助10
3秒前
林东东完成签到,获得积分10
3秒前
jingjing发布了新的文献求助10
4秒前
脑洞疼应助杂兵甲采纳,获得10
4秒前
Lucas应助qzs采纳,获得10
4秒前
往不随发布了新的文献求助10
5秒前
5秒前
de发布了新的文献求助10
5秒前
西西发布了新的文献求助10
6秒前
科研通AI6应助娇气的友易采纳,获得10
6秒前
6秒前
ym完成签到,获得积分10
6秒前
LingLu完成签到,获得积分10
7秒前
Twonej应助Melody呀采纳,获得30
7秒前
7秒前
7秒前
8秒前
高高大有关注了科研通微信公众号
8秒前
8秒前
科研通AI6应助自信的缘分采纳,获得10
9秒前
9秒前
完美世界应助wtt采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853