Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry

有限元法 固定装置 应变计 涡轮叶片 流离失所(心理学) 结构工程 结构健康监测 振动器 涡轮机 位移场 工程类 悬臂梁 声学 振动 机械工程 物理 心理治疗师 心理学
作者
Javad Baqersad,Christopher Niezrecki,Peter Avitabile
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:62-63: 284-295 被引量:88
标识
DOI:10.1016/j.ymssp.2015.03.021
摘要

Health monitoring of rotating structures (e.g. wind turbines and helicopter blades) has historically been a challenge due to sensing and data transmission problems. Unfortunately mechanical failure in many structures initiates at components on or inside the structure where there is no sensor located to predict the failure. In this paper, a wind turbine was mounted with a semi-built-in configuration and was excited using a mechanical shaker. A series of optical targets was distributed along the blades and the fixture and the displacement of those targets during excitation was measured using a pair of high speed cameras. Measured displacements with three dimensional point tracking were transformed to all finite element degrees of freedom using a modal expansion algorithm. The expanded displacements were applied to the finite element model to predict the full-field dynamic strain on the surface of the structure as well as within the interior points. To validate the methodology of dynamic strain prediction, the predicted strain was compared to measured strain by using six mounted strain-gages. To verify if a simpler model of the turbine can be used for the expansion, the expansion process was performed both by using the modes of the entire turbine and modes of a single cantilever blade. The results indicate that the expansion approach can accurately predict the strain throughout the turbine blades from displacements measured by using stereophotogrammetry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
微笑立轩完成签到,获得积分10
2秒前
2秒前
鼠大帅发布了新的文献求助10
3秒前
10秒前
超级瑶瑶发布了新的文献求助10
16秒前
林夕完成签到,获得积分10
22秒前
orixero应助萨尔莫斯采纳,获得10
27秒前
呜呜发布了新的文献求助10
28秒前
28秒前
行走的猫完成签到 ,获得积分10
29秒前
30秒前
tracer526发布了新的文献求助10
32秒前
优雅的女神完成签到,获得积分10
33秒前
ikutovaya完成签到,获得积分10
34秒前
理躺丁真完成签到,获得积分10
35秒前
37秒前
SJD完成签到,获得积分0
38秒前
呜呜完成签到,获得积分10
38秒前
领导范儿应助超级瑶瑶采纳,获得10
39秒前
萨尔莫斯发布了新的文献求助10
40秒前
科研通AI6应助蟹黄丸子采纳,获得30
41秒前
可靠小懒虫完成签到,获得积分10
42秒前
今后应助善良的广缘采纳,获得10
42秒前
欢喜的早晨完成签到,获得积分10
46秒前
英俊的铭应助tracer526采纳,获得10
47秒前
彭于晏应助科研通管家采纳,获得10
48秒前
科研通AI6应助科研通管家采纳,获得10
48秒前
orixero应助科研通管家采纳,获得10
48秒前
蓝天应助科研通管家采纳,获得10
48秒前
大个应助科研通管家采纳,获得10
48秒前
梦将军应助科研通管家采纳,获得10
48秒前
梁jj应助科研通管家采纳,获得30
48秒前
FashionBoy应助科研通管家采纳,获得10
48秒前
shhoing应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
Zewen_Li应助科研通管家采纳,获得10
49秒前
XY应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
蓝天应助科研通管家采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675591
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516526
邀请新用户注册赠送积分活动 1490130
关于科研通互助平台的介绍 1460963