人类免疫缺陷病毒(HIV)
动力学(音乐)
稳态(化学)
理论(学习稳定性)
国家(计算机科学)
Cd4 t细胞
物理
病毒学
数学
化学
生物
免疫学
T细胞
免疫系统
计算机科学
物理化学
机器学习
声学
算法
作者
Liancheng Wang,Sean F. Ellermeyer
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2006-01-01
卷期号:6 (6): 1417-1430
被引量:18
标识
DOI:10.3934/dcdsb.2006.6.1417
摘要
We study a mathematical model for the interaction of HIV infectionand CD4$^+$ T cells. Local and global analysis is carried out. Let$N$ be the number of HIV virus produced per actively infected Tcell. After identifying a critical number $N_{crit}$, we show thatif $N\le N_{crit},$ then the uninfected steady state $P_{0}$ is theonly equilibrium in the feasible region, and $P_{0}$ is globallyasymptotically stable. Therefore, no HIV infection persists. If$N>N_{crit},$ then the infected steady state $P^$* emerges asthe unique equilibrium in the interior of the feasible region,$P_{0}$ becomes unstable and the system is uniformly persistent.Therefore, HIV infection persists. In this case, $P^$* can beeither stable or unstable. We show that $P^$* is stable only for $r$(the proliferation rate of T cells) small or large and unstable forsome intermediate values of $r.$ In the latter case, numericalsimulations indicate a stable periodic solution exists.
科研通智能强力驱动
Strongly Powered by AbleSci AI