清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Distance Regularized Level Set Evolution and Its Application to Image Segmentation

符号距离函数 水平集方法 人工智能 正规化(语言学) 分割 集合函数 计算机科学 数学 图像分割 数学优化 水平集(数据结构) 集合(抽象数据类型) 功能(生物学) 算法 进化生物学 生物 程序设计语言
作者
Chunming Li,Chenyang Xu,Changfeng Gui,M.D. Fox
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (12): 3243-3254 被引量:1963
标识
DOI:10.1109/tip.2010.2069690
摘要

Level set methods have been widely used in image processing and computer vision. In conventional level set formulations, the level set function typically develops irregularities during its evolution, which may cause numerical errors and eventually destroy the stability of the evolution. Therefore, a numerical remedy, called reinitialization, is typically applied to periodically replace the degraded level set function with a signed distance function. However, the practice of reinitialization not only raises serious problems as when and how it should be performed, but also affects numerical accuracy in an undesirable way. This paper proposes a new variational level set formulation in which the regularity of the level set function is intrinsically maintained during the level set evolution. The level set evolution is derived as the gradient flow that minimizes an energy functional with a distance regularization term and an external energy that drives the motion of the zero level set toward desired locations. The distance regularization term is defined with a potential function such that the derived level set evolution has a unique forward-and-backward (FAB) diffusion effect, which is able to maintain a desired shape of the level set function, particularly a signed distance profile near the zero level set. This yields a new type of level set evolution called distance regularized level set evolution (DRLSE). The distance regularization effect eliminates the need for reinitialization and thereby avoids its induced numerical errors. In contrast to complicated implementations of conventional level set formulations, a simpler and more efficient finite difference scheme can be used to implement the DRLSE formulation. DRLSE also allows the use of more general and efficient initialization of the level set function. In its numerical implementation, relatively large time steps can be used in the finite difference scheme to reduce the number of iterations, while ensuring sufficient numerical accuracy. To demonstrate the effectiveness of the DRLSE formulation, we apply it to an edge-based active contour model for image segmentation, and provide a simple narrowband implementation to greatly reduce computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昂无敌完成签到,获得积分10
12秒前
tty应助科研通管家采纳,获得30
15秒前
徐恭完成签到 ,获得积分10
20秒前
忘忧Aquarius完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
25秒前
ceeray23发布了新的文献求助20
45秒前
lili关注了科研通微信公众号
47秒前
skittles完成签到,获得积分10
52秒前
1分钟前
贰鸟应助jueshadi采纳,获得10
1分钟前
naczx完成签到,获得积分10
1分钟前
lili发布了新的文献求助10
1分钟前
Owen应助细心的语蓉采纳,获得10
1分钟前
小西完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
知行者完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
qyang完成签到 ,获得积分10
2分钟前
古炮完成签到,获得积分10
2分钟前
Tales完成签到 ,获得积分10
3分钟前
万能图书馆应助haralee采纳,获得10
3分钟前
mzhang2完成签到 ,获得积分10
3分钟前
忧郁的火车完成签到,获得积分10
3分钟前
Davidjin完成签到,获得积分10
3分钟前
房天川完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Hillson完成签到,获得积分10
4分钟前
科研通AI5应助北极光采纳,获得30
4分钟前
火星上惜天完成签到 ,获得积分10
4分钟前
woods完成签到,获得积分10
4分钟前
4分钟前
吗喽完成签到,获得积分20
4分钟前
吗喽发布了新的文献求助10
5分钟前
lod完成签到,获得积分10
5分钟前
5分钟前
上官若男应助吗喽采纳,获得10
5分钟前
haralee发布了新的文献求助10
5分钟前
推土机爱学习完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612539
求助须知:如何正确求助?哪些是违规求助? 4017723
关于积分的说明 12436648
捐赠科研通 3699876
什么是DOI,文献DOI怎么找? 2040404
邀请新用户注册赠送积分活动 1073202
科研通“疑难数据库(出版商)”最低求助积分说明 956894