亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Distance Regularized Level Set Evolution and Its Application to Image Segmentation

符号距离函数 水平集方法 人工智能 正规化(语言学) 分割 集合函数 计算机科学 数学 图像分割 数学优化 水平集(数据结构) 集合(抽象数据类型) 功能(生物学) 算法 进化生物学 生物 程序设计语言
作者
Chunming Li,Chenyang Xu,Changfeng Gui,M.D. Fox
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (12): 3243-3254 被引量:1963
标识
DOI:10.1109/tip.2010.2069690
摘要

Level set methods have been widely used in image processing and computer vision. In conventional level set formulations, the level set function typically develops irregularities during its evolution, which may cause numerical errors and eventually destroy the stability of the evolution. Therefore, a numerical remedy, called reinitialization, is typically applied to periodically replace the degraded level set function with a signed distance function. However, the practice of reinitialization not only raises serious problems as when and how it should be performed, but also affects numerical accuracy in an undesirable way. This paper proposes a new variational level set formulation in which the regularity of the level set function is intrinsically maintained during the level set evolution. The level set evolution is derived as the gradient flow that minimizes an energy functional with a distance regularization term and an external energy that drives the motion of the zero level set toward desired locations. The distance regularization term is defined with a potential function such that the derived level set evolution has a unique forward-and-backward (FAB) diffusion effect, which is able to maintain a desired shape of the level set function, particularly a signed distance profile near the zero level set. This yields a new type of level set evolution called distance regularized level set evolution (DRLSE). The distance regularization effect eliminates the need for reinitialization and thereby avoids its induced numerical errors. In contrast to complicated implementations of conventional level set formulations, a simpler and more efficient finite difference scheme can be used to implement the DRLSE formulation. DRLSE also allows the use of more general and efficient initialization of the level set function. In its numerical implementation, relatively large time steps can be used in the finite difference scheme to reduce the number of iterations, while ensuring sufficient numerical accuracy. To demonstrate the effectiveness of the DRLSE formulation, we apply it to an edge-based active contour model for image segmentation, and provide a simple narrowband implementation to greatly reduce computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的苠发布了新的文献求助10
4秒前
FashionBoy应助飘逸慕灵采纳,获得30
7秒前
yangzai完成签到 ,获得积分10
13秒前
诚心的毛豆完成签到 ,获得积分10
16秒前
wang完成签到,获得积分10
25秒前
27秒前
早睡早起完成签到 ,获得积分10
45秒前
李贝宁完成签到 ,获得积分10
48秒前
科目三应助ghx采纳,获得10
56秒前
阿尼亚发布了新的文献求助10
1分钟前
风止完成签到 ,获得积分10
1分钟前
1分钟前
阳阳阳完成签到 ,获得积分10
1分钟前
1分钟前
春衫发布了新的文献求助10
1分钟前
郭志晟完成签到 ,获得积分10
1分钟前
春衫完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
飘逸慕灵发布了新的文献求助30
1分钟前
1分钟前
朴实如波发布了新的文献求助10
1分钟前
2分钟前
千倾完成签到 ,获得积分10
2分钟前
2分钟前
英姑应助zhangxr采纳,获得10
2分钟前
飘逸慕灵完成签到,获得积分10
2分钟前
zhangxr发布了新的文献求助10
2分钟前
给我辣条丶完成签到,获得积分10
2分钟前
Jasper应助科研通管家采纳,获得20
2分钟前
我是老大应助霸气的思柔采纳,获得10
2分钟前
2分钟前
西葫芦莲子粥完成签到,获得积分10
2分钟前
3分钟前
zhangxr发布了新的文献求助10
3分钟前
浮云完成签到,获得积分10
3分钟前
铁臂阿童木完成签到,获得积分10
3分钟前
3分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139515
求助须知:如何正确求助?哪些是违规求助? 2790418
关于积分的说明 7795156
捐赠科研通 2446832
什么是DOI,文献DOI怎么找? 1301450
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146