Distance Regularized Level Set Evolution and Its Application to Image Segmentation

符号距离函数 水平集方法 人工智能 正规化(语言学) 分割 集合函数 计算机科学 数学 图像分割 数学优化 水平集(数据结构) 集合(抽象数据类型) 功能(生物学) 算法 进化生物学 生物 程序设计语言
作者
Chunming Li,Chenyang Xu,Changfeng Gui,M.D. Fox
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (12): 3243-3254 被引量:1963
标识
DOI:10.1109/tip.2010.2069690
摘要

Level set methods have been widely used in image processing and computer vision. In conventional level set formulations, the level set function typically develops irregularities during its evolution, which may cause numerical errors and eventually destroy the stability of the evolution. Therefore, a numerical remedy, called reinitialization, is typically applied to periodically replace the degraded level set function with a signed distance function. However, the practice of reinitialization not only raises serious problems as when and how it should be performed, but also affects numerical accuracy in an undesirable way. This paper proposes a new variational level set formulation in which the regularity of the level set function is intrinsically maintained during the level set evolution. The level set evolution is derived as the gradient flow that minimizes an energy functional with a distance regularization term and an external energy that drives the motion of the zero level set toward desired locations. The distance regularization term is defined with a potential function such that the derived level set evolution has a unique forward-and-backward (FAB) diffusion effect, which is able to maintain a desired shape of the level set function, particularly a signed distance profile near the zero level set. This yields a new type of level set evolution called distance regularized level set evolution (DRLSE). The distance regularization effect eliminates the need for reinitialization and thereby avoids its induced numerical errors. In contrast to complicated implementations of conventional level set formulations, a simpler and more efficient finite difference scheme can be used to implement the DRLSE formulation. DRLSE also allows the use of more general and efficient initialization of the level set function. In its numerical implementation, relatively large time steps can be used in the finite difference scheme to reduce the number of iterations, while ensuring sufficient numerical accuracy. To demonstrate the effectiveness of the DRLSE formulation, we apply it to an edge-based active contour model for image segmentation, and provide a simple narrowband implementation to greatly reduce computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
brk完成签到,获得积分10
刚刚
英姑应助典雅的友安采纳,获得10
1秒前
Sunny发布了新的文献求助30
1秒前
3秒前
威武从霜发布了新的文献求助10
3秒前
4秒前
情怀应助zzz采纳,获得10
4秒前
酷钱发布了新的文献求助10
5秒前
5秒前
笨笨的怜雪完成签到 ,获得积分10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
香蕉觅云应助Aether采纳,获得10
8秒前
9秒前
脑洞疼应助sikaixue采纳,获得10
10秒前
11秒前
ZJHYNL发布了新的文献求助10
12秒前
有几颗荔枝关注了科研通微信公众号
12秒前
陈玺丞完成签到,获得积分10
12秒前
congdexxx发布了新的文献求助10
12秒前
本恩宁完成签到 ,获得积分10
13秒前
WXY发布了新的文献求助10
13秒前
14秒前
LHW完成签到,获得积分10
14秒前
14秒前
仲谋发布了新的文献求助10
18秒前
明亮的冷雪完成签到,获得积分10
18秒前
Gloyxtg发布了新的文献求助10
19秒前
Dudu完成签到,获得积分10
20秒前
21秒前
我不理解完成签到,获得积分10
22秒前
23秒前
24秒前
25秒前
耿昊发布了新的文献求助10
25秒前
顾矜应助小姜该看论文了采纳,获得10
25秒前
26秒前
自然莫英完成签到 ,获得积分10
27秒前
勤奋菠萝发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995