Distance Regularized Level Set Evolution and Its Application to Image Segmentation

符号距离函数 水平集方法 人工智能 正规化(语言学) 分割 集合函数 计算机科学 数学 图像分割 数学优化 水平集(数据结构) 集合(抽象数据类型) 功能(生物学) 算法 进化生物学 生物 程序设计语言
作者
Chunming Li,Chenyang Xu,Changfeng Gui,M.D. Fox
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (12): 3243-3254 被引量:1963
标识
DOI:10.1109/tip.2010.2069690
摘要

Level set methods have been widely used in image processing and computer vision. In conventional level set formulations, the level set function typically develops irregularities during its evolution, which may cause numerical errors and eventually destroy the stability of the evolution. Therefore, a numerical remedy, called reinitialization, is typically applied to periodically replace the degraded level set function with a signed distance function. However, the practice of reinitialization not only raises serious problems as when and how it should be performed, but also affects numerical accuracy in an undesirable way. This paper proposes a new variational level set formulation in which the regularity of the level set function is intrinsically maintained during the level set evolution. The level set evolution is derived as the gradient flow that minimizes an energy functional with a distance regularization term and an external energy that drives the motion of the zero level set toward desired locations. The distance regularization term is defined with a potential function such that the derived level set evolution has a unique forward-and-backward (FAB) diffusion effect, which is able to maintain a desired shape of the level set function, particularly a signed distance profile near the zero level set. This yields a new type of level set evolution called distance regularized level set evolution (DRLSE). The distance regularization effect eliminates the need for reinitialization and thereby avoids its induced numerical errors. In contrast to complicated implementations of conventional level set formulations, a simpler and more efficient finite difference scheme can be used to implement the DRLSE formulation. DRLSE also allows the use of more general and efficient initialization of the level set function. In its numerical implementation, relatively large time steps can be used in the finite difference scheme to reduce the number of iterations, while ensuring sufficient numerical accuracy. To demonstrate the effectiveness of the DRLSE formulation, we apply it to an edge-based active contour model for image segmentation, and provide a simple narrowband implementation to greatly reduce computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx_1993应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
buno应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得20
1秒前
FashionBoy应助AteeqBaloch采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
VDC应助科研通管家采纳,获得50
1秒前
1秒前
dd发布了新的文献求助10
1秒前
2秒前
2秒前
薛之谦发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
可可完成签到,获得积分10
5秒前
ybh完成签到,获得积分10
7秒前
uki发布了新的文献求助10
8秒前
可可发布了新的文献求助80
8秒前
8秒前
fbtj完成签到 ,获得积分10
8秒前
叶雨思空发布了新的文献求助10
8秒前
娇气的霸完成签到 ,获得积分10
9秒前
9秒前
9秒前
脑洞疼应助草莓养乐多采纳,获得10
10秒前
10秒前
10秒前
妙妙发布了新的文献求助10
11秒前
在水一方应助健忘的惜雪采纳,获得10
11秒前
12秒前
13秒前
13秒前
CipherSage应助菲菲采纳,获得10
13秒前
lemon发布了新的文献求助30
13秒前
杨先生发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598595
求助须知:如何正确求助?哪些是违规求助? 4684033
关于积分的说明 14833389
捐赠科研通 4664115
什么是DOI,文献DOI怎么找? 2537300
邀请新用户注册赠送积分活动 1504886
关于科研通互助平台的介绍 1470591