亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Distance Regularized Level Set Evolution and Its Application to Image Segmentation

符号距离函数 水平集方法 人工智能 正规化(语言学) 分割 集合函数 计算机科学 数学 图像分割 数学优化 水平集(数据结构) 集合(抽象数据类型) 功能(生物学) 算法 进化生物学 生物 程序设计语言
作者
Chunming Li,Chenyang Xu,Changfeng Gui,M.D. Fox
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (12): 3243-3254 被引量:1963
标识
DOI:10.1109/tip.2010.2069690
摘要

Level set methods have been widely used in image processing and computer vision. In conventional level set formulations, the level set function typically develops irregularities during its evolution, which may cause numerical errors and eventually destroy the stability of the evolution. Therefore, a numerical remedy, called reinitialization, is typically applied to periodically replace the degraded level set function with a signed distance function. However, the practice of reinitialization not only raises serious problems as when and how it should be performed, but also affects numerical accuracy in an undesirable way. This paper proposes a new variational level set formulation in which the regularity of the level set function is intrinsically maintained during the level set evolution. The level set evolution is derived as the gradient flow that minimizes an energy functional with a distance regularization term and an external energy that drives the motion of the zero level set toward desired locations. The distance regularization term is defined with a potential function such that the derived level set evolution has a unique forward-and-backward (FAB) diffusion effect, which is able to maintain a desired shape of the level set function, particularly a signed distance profile near the zero level set. This yields a new type of level set evolution called distance regularized level set evolution (DRLSE). The distance regularization effect eliminates the need for reinitialization and thereby avoids its induced numerical errors. In contrast to complicated implementations of conventional level set formulations, a simpler and more efficient finite difference scheme can be used to implement the DRLSE formulation. DRLSE also allows the use of more general and efficient initialization of the level set function. In its numerical implementation, relatively large time steps can be used in the finite difference scheme to reduce the number of iterations, while ensuring sufficient numerical accuracy. To demonstrate the effectiveness of the DRLSE formulation, we apply it to an edge-based active contour model for image segmentation, and provide a simple narrowband implementation to greatly reduce computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼的蘑菇完成签到 ,获得积分10
刚刚
Yikao完成签到 ,获得积分10
2秒前
无感发布了新的文献求助20
9秒前
酷波er应助米歇尔采纳,获得10
17秒前
余念安完成签到 ,获得积分10
21秒前
25秒前
31秒前
米歇尔发布了新的文献求助10
31秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
传奇3应助科研通管家采纳,获得10
32秒前
所所应助科研通管家采纳,获得10
32秒前
AAA完成签到,获得积分10
34秒前
雪范发布了新的文献求助10
35秒前
35秒前
高山流水完成签到,获得积分10
37秒前
米歇尔完成签到,获得积分20
39秒前
故意的鼠标完成签到,获得积分10
39秒前
瘦瘦代桃发布了新的文献求助10
40秒前
45秒前
hahahan完成签到 ,获得积分10
45秒前
AA发布了新的文献求助10
50秒前
AA完成签到,获得积分10
55秒前
NexusExplorer应助wkk采纳,获得10
1分钟前
小番茄发布了新的文献求助10
1分钟前
histamin完成签到,获得积分10
1分钟前
烟花应助谨慎嫣然采纳,获得10
1分钟前
绿色植物发布了新的文献求助10
1分钟前
whoknowsname完成签到,获得积分10
1分钟前
qpp完成签到 ,获得积分10
1分钟前
WGQ完成签到,获得积分10
1分钟前
未来可期发布了新的文献求助10
1分钟前
1分钟前
阿布发布了新的文献求助10
1分钟前
1分钟前
swan完成签到 ,获得积分10
1分钟前
as完成签到 ,获得积分10
1分钟前
钟江完成签到 ,获得积分10
1分钟前
复杂跳跳糖完成签到,获得积分10
1分钟前
科研通AI2S应助文静凝芙采纳,获得10
1分钟前
桐桐应助grata采纳,获得20
1分钟前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622146
求助须知:如何正确求助?哪些是违规求助? 4707067
关于积分的说明 14938433
捐赠科研通 4768281
什么是DOI,文献DOI怎么找? 2552148
邀请新用户注册赠送积分活动 1514317
关于科研通互助平台的介绍 1475005