已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Distance Regularized Level Set Evolution and Its Application to Image Segmentation

符号距离函数 水平集方法 人工智能 正规化(语言学) 分割 集合函数 计算机科学 数学 图像分割 数学优化 水平集(数据结构) 集合(抽象数据类型) 功能(生物学) 算法 进化生物学 生物 程序设计语言
作者
Chunming Li,Chenyang Xu,Changfeng Gui,M.D. Fox
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (12): 3243-3254 被引量:1963
标识
DOI:10.1109/tip.2010.2069690
摘要

Level set methods have been widely used in image processing and computer vision. In conventional level set formulations, the level set function typically develops irregularities during its evolution, which may cause numerical errors and eventually destroy the stability of the evolution. Therefore, a numerical remedy, called reinitialization, is typically applied to periodically replace the degraded level set function with a signed distance function. However, the practice of reinitialization not only raises serious problems as when and how it should be performed, but also affects numerical accuracy in an undesirable way. This paper proposes a new variational level set formulation in which the regularity of the level set function is intrinsically maintained during the level set evolution. The level set evolution is derived as the gradient flow that minimizes an energy functional with a distance regularization term and an external energy that drives the motion of the zero level set toward desired locations. The distance regularization term is defined with a potential function such that the derived level set evolution has a unique forward-and-backward (FAB) diffusion effect, which is able to maintain a desired shape of the level set function, particularly a signed distance profile near the zero level set. This yields a new type of level set evolution called distance regularized level set evolution (DRLSE). The distance regularization effect eliminates the need for reinitialization and thereby avoids its induced numerical errors. In contrast to complicated implementations of conventional level set formulations, a simpler and more efficient finite difference scheme can be used to implement the DRLSE formulation. DRLSE also allows the use of more general and efficient initialization of the level set function. In its numerical implementation, relatively large time steps can be used in the finite difference scheme to reduce the number of iterations, while ensuring sufficient numerical accuracy. To demonstrate the effectiveness of the DRLSE formulation, we apply it to an edge-based active contour model for image segmentation, and provide a simple narrowband implementation to greatly reduce computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
冬日暖阳发布了新的文献求助10
2秒前
xink完成签到,获得积分10
2秒前
LG关闭了LG文献求助
3秒前
狂野萤应助wssamuel采纳,获得10
3秒前
酷狗小熊发布了新的文献求助10
3秒前
4秒前
顾矜应助L11采纳,获得10
4秒前
耍酷花卷发布了新的文献求助10
5秒前
淡淡奇迹发布了新的文献求助10
7秒前
jinzhao完成签到 ,获得积分10
7秒前
田様应助LYL采纳,获得10
9秒前
11秒前
Jiang 小白完成签到,获得积分10
12秒前
科研通AI6应助复杂的苗条采纳,获得10
13秒前
15秒前
JJing完成签到 ,获得积分10
15秒前
18秒前
淡淡尔烟完成签到,获得积分20
18秒前
狂野的慕蕊完成签到,获得积分10
18秒前
青椒完成签到 ,获得积分10
19秒前
20秒前
煎饼煎饼发布了新的文献求助10
20秒前
无辜含桃完成签到,获得积分10
21秒前
CJX完成签到,获得积分10
21秒前
科研通AI2S应助狂野的慕蕊采纳,获得10
21秒前
欢呼乘风发布了新的文献求助10
22秒前
菜菜泽发布了新的文献求助10
23秒前
23秒前
24秒前
你好棒呀完成签到,获得积分10
26秒前
Orange应助煎饼煎饼采纳,获得10
26秒前
27秒前
CJX发布了新的文献求助10
27秒前
yznfly应助栗爷采纳,获得50
28秒前
科研通AI6应助耍酷花卷采纳,获得10
28秒前
28秒前
he完成签到,获得积分10
30秒前
小毛豆发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627261
求助须知:如何正确求助?哪些是违规求助? 4713332
关于积分的说明 14961607
捐赠科研通 4784189
什么是DOI,文献DOI怎么找? 2554779
邀请新用户注册赠送积分活动 1516304
关于科研通互助平台的介绍 1476657