Distance Regularized Level Set Evolution and Its Application to Image Segmentation

符号距离函数 水平集方法 人工智能 正规化(语言学) 分割 集合函数 计算机科学 数学 图像分割 数学优化 水平集(数据结构) 集合(抽象数据类型) 功能(生物学) 算法 进化生物学 生物 程序设计语言
作者
Chunming Li,Chenyang Xu,Changfeng Gui,M.D. Fox
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (12): 3243-3254 被引量:1963
标识
DOI:10.1109/tip.2010.2069690
摘要

Level set methods have been widely used in image processing and computer vision. In conventional level set formulations, the level set function typically develops irregularities during its evolution, which may cause numerical errors and eventually destroy the stability of the evolution. Therefore, a numerical remedy, called reinitialization, is typically applied to periodically replace the degraded level set function with a signed distance function. However, the practice of reinitialization not only raises serious problems as when and how it should be performed, but also affects numerical accuracy in an undesirable way. This paper proposes a new variational level set formulation in which the regularity of the level set function is intrinsically maintained during the level set evolution. The level set evolution is derived as the gradient flow that minimizes an energy functional with a distance regularization term and an external energy that drives the motion of the zero level set toward desired locations. The distance regularization term is defined with a potential function such that the derived level set evolution has a unique forward-and-backward (FAB) diffusion effect, which is able to maintain a desired shape of the level set function, particularly a signed distance profile near the zero level set. This yields a new type of level set evolution called distance regularized level set evolution (DRLSE). The distance regularization effect eliminates the need for reinitialization and thereby avoids its induced numerical errors. In contrast to complicated implementations of conventional level set formulations, a simpler and more efficient finite difference scheme can be used to implement the DRLSE formulation. DRLSE also allows the use of more general and efficient initialization of the level set function. In its numerical implementation, relatively large time steps can be used in the finite difference scheme to reduce the number of iterations, while ensuring sufficient numerical accuracy. To demonstrate the effectiveness of the DRLSE formulation, we apply it to an edge-based active contour model for image segmentation, and provide a simple narrowband implementation to greatly reduce computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助影子芳香采纳,获得10
刚刚
刚刚
达芬骑驴完成签到,获得积分10
1秒前
科研通AI2S应助默默的问兰采纳,获得10
2秒前
柠檬发布了新的文献求助10
2秒前
2秒前
生生不息完成签到,获得积分10
2秒前
KD357完成签到,获得积分10
3秒前
缓慢含烟发布了新的文献求助10
3秒前
3秒前
LTDJYYD完成签到,获得积分10
3秒前
4秒前
zx发布了新的文献求助10
4秒前
自由的新波完成签到,获得积分10
4秒前
wualexandra完成签到,获得积分10
5秒前
科研通AI6应助Ly采纳,获得10
5秒前
5秒前
zyw发布了新的文献求助10
5秒前
hmx完成签到,获得积分10
5秒前
兰兰猪头发布了新的文献求助10
5秒前
6秒前
6秒前
打打应助卫踏歌采纳,获得10
6秒前
乐观金毛发布了新的文献求助10
6秒前
等等等等发布了新的文献求助10
7秒前
桐桐应助优美采纳,获得10
7秒前
能干一刀发布了新的文献求助10
7秒前
hhxx发布了新的文献求助10
7秒前
sakris完成签到 ,获得积分10
8秒前
所所应助54采纳,获得10
8秒前
zls完成签到,获得积分20
8秒前
不倦应助chen666采纳,获得10
8秒前
CodeCraft应助虚拟的绿柏采纳,获得10
9秒前
9秒前
小蘑菇应助明硕阳采纳,获得10
9秒前
缥缈蓉发布了新的文献求助10
9秒前
刘文静完成签到,获得积分10
9秒前
10秒前
10秒前
缓慢含烟完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257403
求助须知:如何正确求助?哪些是违规求助? 4419507
关于积分的说明 13756551
捐赠科研通 4292770
什么是DOI,文献DOI怎么找? 2355654
邀请新用户注册赠送积分活动 1352106
关于科研通互助平台的介绍 1312849