Distance Regularized Level Set Evolution and Its Application to Image Segmentation

符号距离函数 水平集方法 人工智能 正规化(语言学) 分割 集合函数 计算机科学 数学 图像分割 数学优化 水平集(数据结构) 集合(抽象数据类型) 功能(生物学) 算法 进化生物学 生物 程序设计语言
作者
Chunming Li,Chenyang Xu,Changfeng Gui,M.D. Fox
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (12): 3243-3254 被引量:1963
标识
DOI:10.1109/tip.2010.2069690
摘要

Level set methods have been widely used in image processing and computer vision. In conventional level set formulations, the level set function typically develops irregularities during its evolution, which may cause numerical errors and eventually destroy the stability of the evolution. Therefore, a numerical remedy, called reinitialization, is typically applied to periodically replace the degraded level set function with a signed distance function. However, the practice of reinitialization not only raises serious problems as when and how it should be performed, but also affects numerical accuracy in an undesirable way. This paper proposes a new variational level set formulation in which the regularity of the level set function is intrinsically maintained during the level set evolution. The level set evolution is derived as the gradient flow that minimizes an energy functional with a distance regularization term and an external energy that drives the motion of the zero level set toward desired locations. The distance regularization term is defined with a potential function such that the derived level set evolution has a unique forward-and-backward (FAB) diffusion effect, which is able to maintain a desired shape of the level set function, particularly a signed distance profile near the zero level set. This yields a new type of level set evolution called distance regularized level set evolution (DRLSE). The distance regularization effect eliminates the need for reinitialization and thereby avoids its induced numerical errors. In contrast to complicated implementations of conventional level set formulations, a simpler and more efficient finite difference scheme can be used to implement the DRLSE formulation. DRLSE also allows the use of more general and efficient initialization of the level set function. In its numerical implementation, relatively large time steps can be used in the finite difference scheme to reduce the number of iterations, while ensuring sufficient numerical accuracy. To demonstrate the effectiveness of the DRLSE formulation, we apply it to an edge-based active contour model for image segmentation, and provide a simple narrowband implementation to greatly reduce computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
才欣宇完成签到 ,获得积分10
1秒前
A徽发布了新的文献求助10
1秒前
2秒前
想想完成签到 ,获得积分10
2秒前
S77发布了新的文献求助10
2秒前
深情安青应助元元369采纳,获得10
2秒前
黄丽珍关注了科研通微信公众号
3秒前
慕青应助伶俐的以筠采纳,获得10
3秒前
Anthone发布了新的文献求助10
3秒前
olly完成签到,获得积分10
3秒前
Billy应助成就的雅彤采纳,获得30
3秒前
Infinity发布了新的文献求助30
3秒前
4秒前
是乐乐呀完成签到,获得积分10
4秒前
4秒前
SciGPT应助foceman采纳,获得10
4秒前
窦慕卉完成签到,获得积分10
4秒前
charles发布了新的文献求助10
5秒前
所所应助tds采纳,获得10
6秒前
zhyi发布了新的文献求助10
6秒前
共享精神应助1234采纳,获得10
6秒前
6秒前
姚耀发布了新的文献求助10
6秒前
Whc发布了新的文献求助30
7秒前
斯文败类应助yukuai采纳,获得10
9秒前
CodeCraft应助tomorrow采纳,获得10
10秒前
万能图书馆应助ciooli采纳,获得10
10秒前
搜集达人应助yuebaoji采纳,获得10
10秒前
怡然幻然完成签到,获得积分10
11秒前
姚一发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
Hello应助uglyboy采纳,获得30
12秒前
寒色完成签到,获得积分10
12秒前
13秒前
tt发布了新的文献求助10
13秒前
14秒前
14秒前
tds完成签到,获得积分10
16秒前
16秒前
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126