Distance Regularized Level Set Evolution and Its Application to Image Segmentation

符号距离函数 水平集方法 人工智能 正规化(语言学) 分割 集合函数 计算机科学 数学 图像分割 数学优化 水平集(数据结构) 集合(抽象数据类型) 功能(生物学) 算法 进化生物学 生物 程序设计语言
作者
Chunming Li,Chenyang Xu,Changfeng Gui,M.D. Fox
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (12): 3243-3254 被引量:1963
标识
DOI:10.1109/tip.2010.2069690
摘要

Level set methods have been widely used in image processing and computer vision. In conventional level set formulations, the level set function typically develops irregularities during its evolution, which may cause numerical errors and eventually destroy the stability of the evolution. Therefore, a numerical remedy, called reinitialization, is typically applied to periodically replace the degraded level set function with a signed distance function. However, the practice of reinitialization not only raises serious problems as when and how it should be performed, but also affects numerical accuracy in an undesirable way. This paper proposes a new variational level set formulation in which the regularity of the level set function is intrinsically maintained during the level set evolution. The level set evolution is derived as the gradient flow that minimizes an energy functional with a distance regularization term and an external energy that drives the motion of the zero level set toward desired locations. The distance regularization term is defined with a potential function such that the derived level set evolution has a unique forward-and-backward (FAB) diffusion effect, which is able to maintain a desired shape of the level set function, particularly a signed distance profile near the zero level set. This yields a new type of level set evolution called distance regularized level set evolution (DRLSE). The distance regularization effect eliminates the need for reinitialization and thereby avoids its induced numerical errors. In contrast to complicated implementations of conventional level set formulations, a simpler and more efficient finite difference scheme can be used to implement the DRLSE formulation. DRLSE also allows the use of more general and efficient initialization of the level set function. In its numerical implementation, relatively large time steps can be used in the finite difference scheme to reduce the number of iterations, while ensuring sufficient numerical accuracy. To demonstrate the effectiveness of the DRLSE formulation, we apply it to an edge-based active contour model for image segmentation, and provide a simple narrowband implementation to greatly reduce computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
12334完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
4秒前
二木发布了新的文献求助10
5秒前
高远玺完成签到 ,获得积分10
5秒前
fangang发布了新的文献求助30
6秒前
科研通AI2S应助lucas采纳,获得10
7秒前
家迎松发布了新的文献求助10
8秒前
8秒前
Erich完成签到 ,获得积分10
9秒前
Eton完成签到,获得积分10
9秒前
LingYun完成签到,获得积分10
9秒前
Hey完成签到 ,获得积分10
10秒前
tys0713104发布了新的文献求助10
12秒前
xfy完成签到,获得积分10
12秒前
小棉背心完成签到 ,获得积分10
12秒前
巨大的小侠完成签到,获得积分10
13秒前
复杂的蛋挞完成签到 ,获得积分10
14秒前
寂灭之时完成签到,获得积分10
14秒前
唐唐发布了新的文献求助10
15秒前
温暖的皮皮虾完成签到,获得积分10
15秒前
大模型应助liuzhanyu采纳,获得10
17秒前
cyb1221完成签到 ,获得积分10
19秒前
小二郎应助tys0713104采纳,获得10
19秒前
Roy完成签到,获得积分10
21秒前
斯文败类应助大兵哥采纳,获得10
24秒前
Zero完成签到 ,获得积分10
25秒前
znn完成签到 ,获得积分10
27秒前
27秒前
Graham完成签到,获得积分10
27秒前
28秒前
周琦发布了新的文献求助10
29秒前
桐桐应助唐唐采纳,获得10
30秒前
30秒前
123完成签到,获得积分10
31秒前
liuzhanyu发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565256
求助须知:如何正确求助?哪些是违规求助? 4650146
关于积分的说明 14689953
捐赠科研通 4591998
什么是DOI,文献DOI怎么找? 2519428
邀请新用户注册赠送积分活动 1491940
关于科研通互助平台的介绍 1463159