Distance Regularized Level Set Evolution and Its Application to Image Segmentation

符号距离函数 水平集方法 人工智能 正规化(语言学) 分割 集合函数 计算机科学 数学 图像分割 数学优化 水平集(数据结构) 集合(抽象数据类型) 功能(生物学) 算法 进化生物学 生物 程序设计语言
作者
Chunming Li,Chenyang Xu,Changfeng Gui,M.D. Fox
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (12): 3243-3254 被引量:1963
标识
DOI:10.1109/tip.2010.2069690
摘要

Level set methods have been widely used in image processing and computer vision. In conventional level set formulations, the level set function typically develops irregularities during its evolution, which may cause numerical errors and eventually destroy the stability of the evolution. Therefore, a numerical remedy, called reinitialization, is typically applied to periodically replace the degraded level set function with a signed distance function. However, the practice of reinitialization not only raises serious problems as when and how it should be performed, but also affects numerical accuracy in an undesirable way. This paper proposes a new variational level set formulation in which the regularity of the level set function is intrinsically maintained during the level set evolution. The level set evolution is derived as the gradient flow that minimizes an energy functional with a distance regularization term and an external energy that drives the motion of the zero level set toward desired locations. The distance regularization term is defined with a potential function such that the derived level set evolution has a unique forward-and-backward (FAB) diffusion effect, which is able to maintain a desired shape of the level set function, particularly a signed distance profile near the zero level set. This yields a new type of level set evolution called distance regularized level set evolution (DRLSE). The distance regularization effect eliminates the need for reinitialization and thereby avoids its induced numerical errors. In contrast to complicated implementations of conventional level set formulations, a simpler and more efficient finite difference scheme can be used to implement the DRLSE formulation. DRLSE also allows the use of more general and efficient initialization of the level set function. In its numerical implementation, relatively large time steps can be used in the finite difference scheme to reduce the number of iterations, while ensuring sufficient numerical accuracy. To demonstrate the effectiveness of the DRLSE formulation, we apply it to an edge-based active contour model for image segmentation, and provide a simple narrowband implementation to greatly reduce computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过时的机器猫完成签到,获得积分10
刚刚
追寻的衣完成签到,获得积分10
刚刚
科研通AI6应助多情的忆之采纳,获得10
1秒前
西米露关注了科研通微信公众号
1秒前
猪米妮发布了新的文献求助10
3秒前
cyyf完成签到,获得积分10
3秒前
4秒前
奋斗不斜发布了新的文献求助10
4秒前
txy完成签到 ,获得积分10
5秒前
明理飞荷发布了新的文献求助10
5秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
17秒前
浮游应助默默的巧荷采纳,获得10
17秒前
正直万仇完成签到,获得积分10
17秒前
牧夜白完成签到,获得积分10
19秒前
无极微光应助大橙子采纳,获得20
19秒前
19秒前
周丽萍完成签到,获得积分10
20秒前
45465465456发布了新的文献求助10
20秒前
千山孤风完成签到,获得积分0
20秒前
早睡完成签到 ,获得积分10
21秒前
21秒前
CipherSage应助超级的怜翠采纳,获得10
22秒前
shhoing应助纯纯小白采纳,获得10
23秒前
24秒前
cy发布了新的文献求助10
24秒前
酷波er应助LEESO采纳,获得20
24秒前
25秒前
25秒前
v1008完成签到,获得积分10
26秒前
777完成签到,获得积分10
27秒前
所所应助科研通管家采纳,获得10
28秒前
Akim应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
Orange应助科研通管家采纳,获得10
28秒前
wanci应助科研通管家采纳,获得10
28秒前
Ava应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536758
求助须知:如何正确求助?哪些是违规求助? 4624342
关于积分的说明 14591700
捐赠科研通 4564904
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480738
关于科研通互助平台的介绍 1451989