骨关节炎
SMAD公司
软骨
医学
转化生长因子
软骨细胞
细胞生物学
病理
内科学
解剖
生物
替代医学
作者
E.N. Blaney Davidson,E.L. Vitters,P.M. van der Kraan,Wim B. van den Berg
标识
DOI:10.1136/ard.2005.045971
摘要
The primary feature of osteoarthritis is cartilage loss. In addition, osteophytes can frequently be observed. Transforming growth factor-beta (TGFbeta) has been suggested to be associated with protection against cartilage damage and new cartilage formation as seen in osteophytes.To study TGFbeta and TGFbeta signalling in experimental osteoarthritis to gain insight into the role of TGFbeta in cartilage degradation and osteophyte formation during osteoarthritis progression.Histological sections of murine knee joints were stained immunohistochemically for TGFbeta3 and phosphorylated SMAD-2 (SMAD-2P). Expression patterns were studied in two murine osteoarthritis models, representing spontaneous (STR/ort model) and instability-associated osteoarthritis (collagenase-induced instability model).TGFbeta3 and SMAD-2P staining was increasingly reduced in cartilage during osteoarthritis progression in both models. Severely damaged cartilage was negative for TGFbeta3. In contrast, bone morphogenetic protein-2 (BMP-2) expression was increased. In chondrocyte clusters, preceding osteophyte formation, TGFbeta3 and SMAD-2P were strongly expressed. In early osteophytes, TGFbeta3 was found in the outer fibrous layer, in the peripheral chondroblasts and in the core. Late osteophytes expressed TGFbeta3 only in the fibrous layer. SMAD-2P was found throughout the osteophyte at all stages. In the late-stage osteophytes, BMP-2 was strongly expressed.Data show that lack of TGFbeta3 is associated with cartilage damage, suggesting loss of the protective effect of TGFbeta3 during osteoarthritis progression. Additionally, our results indicate that TGFbeta3 is involved in early osteophyte development, whereas BMP might be involved in late osteophyte development.
科研通智能强力驱动
Strongly Powered by AbleSci AI