3-D/2-D registration of CT and MR to X-ray images

基准标记 图像配准 成像体模 人工智能 方向(向量空间) 分割 刚性变换 射线照相术 核医学 磁共振成像 计算机视觉 计算机科学 金标准(测试) 光学(聚焦) 断层摄影术 医学 放射科 数学 图像(数学) 物理 几何学 光学
作者
Dejan Tomaževič,B. Likar,T. Slivnik,F. Pernuš
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:22 (11): 1407-1416 被引量:168
标识
DOI:10.1109/tmi.2003.819277
摘要

A crucial part of image-guided therapy is registration of preoperative and intraoperative images, by which the precise position and orientation of the patient's anatomy is determined in three dimensions. This paper presents a novel approach to register three-dimensional (3-D) computed tomography (CT) or magnetic resonance (MR) images to one or more two-dimensional (2-D) X-ray images. The registration is based solely on the information present in 2-D and 3-D images. It does not require fiducial markers, intraoperative X-ray image segmentation, or timely construction of digitally reconstructed radiographs. The originality of the approach is in using normals to bone surfaces, preoperatively defined in 3-D MR or CT data, and gradients of intraoperative X-ray images at locations defined by the X-ray source and 3-D surface points. The registration is concerned with finding the rigid transformation of a CT or MR volume, which provides the best match between surface normals and back projected gradients, considering their amplitudes and orientations. We have thoroughly validated our registration method by using MR, CT, and X-ray images of a cadaveric lumbar spine phantom for which "gold standard" registration was established by means of fiducial markers, and its accuracy assessed by target registration error. Volumes of interest, containing single vertebrae L1-L5, were registered to different pairs of X-ray images from different starting positions, chosen randomly and uniformly around the "gold standard" position. CT/X-ray (MR/X-ray) registration, which is fast, was successful in more than 91% (82% except for Ll) of trials if started from the "gold standard" translated or rotated for less than 6 mm or 17/spl deg/ (3 mm or 8.6/spl deg/), respectively. Root-mean-square target registration errors were below 0.5 mm for the CT to X-ray registration and below 1.4 mm for MR to X-ray registration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周周发布了新的文献求助10
1秒前
hohokuz完成签到,获得积分10
2秒前
Joy完成签到,获得积分10
2秒前
3秒前
仲半邪完成签到,获得积分10
3秒前
zz发布了新的文献求助10
3秒前
草莓不梅发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
6秒前
7秒前
sooo发布了新的文献求助10
7秒前
yangdoudou完成签到,获得积分10
7秒前
科研通AI6.1应助星星采纳,获得10
7秒前
GRX1110发布了新的文献求助10
8秒前
yy完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
嘉梦完成签到,获得积分10
11秒前
酷波er应助凶狗睡大石采纳,获得10
11秒前
CAOHOU应助yy采纳,获得10
12秒前
SAD完成签到,获得积分20
12秒前
13秒前
慕青应助光亮的万天采纳,获得10
13秒前
哈士奇野猪完成签到,获得积分20
13秒前
14秒前
14秒前
美满的红酒完成签到 ,获得积分10
14秒前
西西发布了新的文献求助10
15秒前
BINGBING1230发布了新的文献求助30
15秒前
CodeCraft应助豆芽菜采纳,获得10
16秒前
可爱的函函应助TT001采纳,获得10
16秒前
16秒前
充电宝应助东明采纳,获得10
16秒前
17秒前
清秀晓筠完成签到,获得积分10
17秒前
18秒前
JamesPei应助birdy采纳,获得10
18秒前
李健应助月圆夜采纳,获得20
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742729
求助须知:如何正确求助?哪些是违规求助? 5409935
关于积分的说明 15345601
捐赠科研通 4883834
什么是DOI,文献DOI怎么找? 2625399
邀请新用户注册赠送积分活动 1574188
关于科研通互助平台的介绍 1531146