化学
丁基羟基甲苯
有机化学
过氧化物
抗氧化剂
涂层
聚乙二醇
核化学
作者
Michael J Puz,Barbara Johnson,Brendan Murphy
摘要
The application of a controlled-release asymmetric membrane (AM) coating containing cellulose acetate and polyethylene glycol 3350 (PEG3350) to a stable osmotic tablet core resulted in the oxidative degradation of active ingredient located in the core. It was hypothesized that the production of hydroperoxides from PEG3350 in the coating was responsible for the electrophilic oxidation of drug to the sulfoxide degradation product. The type and solubility of carboxylic acid excipient used to formulate the drug release profile of the osmotic tablet significantly influenced the amount of oxidation. By adding the antioxidant butylated hydroxytoluene (BHT) to the coating, oxidation was significantly inhibited in tablets placed on accelerated stability. Of three additives that were used to prevent oxidation [BHT, ferrous sulfate, and ethylenediaminetetraacetic acid (EDTA)], BHT was shown to be the most effective at preventing sulfoxide formation. The BHT was also shown to be more effective in the coating rather than in the core due to its location closer to the source of the oxidizing species, PEG3350, in the coating.
科研通智能强力驱动
Strongly Powered by AbleSci AI