A neural-network-based method for predicting protein stability changes upon single point mutations

计算机科学 理论(学习稳定性) 突变 单点 人工神经网络 点突变 机器学习 人工智能 点(几何) 计算生物学 遗传学 生物 数学 几何学 基因 特里兹
作者
Emidio Capriotti,Piero Fariselli,Rita Casadio
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:20 (suppl_1): i63-i68 被引量:168
标识
DOI:10.1093/bioinformatics/bth928
摘要

One important requirement for protein design is to be able to predict changes of protein stability upon mutation. Different methods addressing this task have been described and their performance tested considering global linear correlation between predicted and experimental data. Neither is direct statistical evaluation of their prediction performance available, nor is a direct comparison among different approaches possible. Recently, a significant database of thermodynamic data on protein stability changes upon single point mutation has been generated (ProTherm). This allows the application of machine learning techniques to predicting free energy stability changes upon mutation starting from the protein sequence.In this paper, we present a neural-network-based method to predict if a given mutation increases or decreases the protein thermodynamic stability with respect to the native structure. Using a dataset consisting of 1615 mutations, our predictor correctly classifies >80% of the mutations in the database. On the same task and using the same data, our predictor performs better than other methods available on the Web. Moreover, when our system is coupled with energy-based methods, the joint prediction accuracy increases up to 90%, suggesting that it can be used to increase also the performance of pre-existing methods, and generally to improve protein design strategies.The server is under construction and will be available at http://www.biocomp.unibo.it
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqdm完成签到 ,获得积分10
刚刚
澍澍完成签到,获得积分10
刚刚
2秒前
Ameko809发布了新的文献求助10
3秒前
YaoHui发布了新的文献求助10
3秒前
4秒前
ala发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
外向从灵完成签到,获得积分10
7秒前
7秒前
知许解夏应助北彧采纳,获得10
10秒前
LC完成签到 ,获得积分10
10秒前
129753发布了新的文献求助10
11秒前
澳洲小肥牛完成签到,获得积分10
11秒前
彭于彦祖应助0384p采纳,获得200
11秒前
12秒前
深情安青应助猴哥好样的采纳,获得10
12秒前
水博士发布了新的文献求助10
13秒前
王线性完成签到,获得积分10
13秒前
黎尘完成签到,获得积分10
13秒前
素颜浅笑发布了新的文献求助20
14秒前
善学以致用应助六点一横采纳,获得10
14秒前
猪猪hero应助顺心的巨人采纳,获得10
15秒前
轩辕一笑发布了新的文献求助10
15秒前
yjj关闭了yjj文献求助
15秒前
16秒前
16秒前
夏风发布了新的文献求助10
18秒前
CipherSage应助姜懿采纳,获得10
18秒前
Eacom完成签到,获得积分10
18秒前
19秒前
lili发布了新的文献求助10
21秒前
21秒前
CodeCraft应助SDNUDRUG采纳,获得10
21秒前
23秒前
阿胡发布了新的文献求助30
23秒前
DJANGO发布了新的文献求助10
23秒前
星辰大海应助嘻嘻乙烯采纳,获得10
23秒前
24秒前
知许解夏应助lu采纳,获得10
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961170
求助须知:如何正确求助?哪些是违规求助? 3507441
关于积分的说明 11136135
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790456
邀请新用户注册赠送积分活动 872439
科研通“疑难数据库(出版商)”最低求助积分说明 803152