Controls on the emission of plant volatiles through stomata: A sensitivity analysis

灵敏度(控制系统) 化学 学位(音乐) 环境科学 环境化学 分析化学(期刊) 生物系统 物理 电子工程 声学 生物 工程类
作者
Ülo Niinemets,Markus Reichstein
出处
期刊:Journal of Geophysical Research [Wiley]
卷期号:108 (D7) 被引量:144
标识
DOI:10.1029/2002jd002626
摘要

According to experimental studies, plant emissions of volatile organic compounds (VOC) are controlled by stomata to a varying extent, but the differing responses could not be explained so far. A dynamic emission model developed in a previous study indicated that stomata may limit the emission rate in a nonsteady state conditions, whereas the rate of increase of liquid‐phase volatile concentrations controls the degree to which stomata temporarily curtail the emission. Despite its large predictive capability, potentially large number of volatile physico‐chemical and leaf structural variables are needed for parameterization of such dynamic models, limiting the usefulness of the approach. We conducted a sensitivity analysis to determine the effect of varying VOC distribution between gas‐ and liquid‐phases (Henry's law constant, H , Pa m 3 mol −1 ) and varying internal diffusion conductances in the liquid‐ and gas‐phases. The model was parameterized for three contrasting leaf architectures (conifer, sclerophyll, and mesophytic leaves). The sensitivity analysis indicated that the volatile H value is the key variable affecting the stomatal sensitivity of VOC emissions. Differences in leaf architecture, in particular in leaf liquid volume to area ratio, also modified the emission responses to changes in stomatal aperture, but these structural effects were superimposed by compound gas/liquid phase partitioning. The results of this analysis indicate that major effort in parameterization of dynamic VOC emission models should be directed toward obtaining reliable gas/liquid‐phase equilibria for various plant volatiles, and that these models may readily be applied for leaves with contrasting architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
甜甜的平蓝完成签到,获得积分10
2秒前
3秒前
3秒前
潇洒飞丹完成签到,获得积分10
4秒前
6秒前
7秒前
7秒前
Baywreath完成签到,获得积分10
8秒前
竹筏过海应助Lei采纳,获得30
8秒前
马皓发布了新的文献求助10
8秒前
9秒前
田字格发布了新的文献求助10
10秒前
北极星发布了新的文献求助10
11秒前
12秒前
南原给南原的求助进行了留言
12秒前
13秒前
Wenjian7761完成签到,获得积分10
13秒前
缪缪发布了新的文献求助10
15秒前
老实的石头完成签到,获得积分10
15秒前
小吴同学发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
18秒前
腼腆的若雁完成签到,获得积分10
19秒前
19秒前
fuiee发布了新的文献求助10
19秒前
小开心完成签到,获得积分10
19秒前
北极星完成签到,获得积分10
20秒前
cccc完成签到 ,获得积分10
20秒前
21秒前
Dogged完成签到 ,获得积分10
22秒前
耶啵耶啵完成签到 ,获得积分10
23秒前
mentality完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
24秒前
VDC应助机智寻雪采纳,获得30
24秒前
24秒前
jack_kunn发布了新的文献求助30
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714