Controls on the emission of plant volatiles through stomata: A sensitivity analysis

灵敏度(控制系统) 化学 学位(音乐) 环境科学 环境化学 分析化学(期刊) 生物系统 物理 电子工程 声学 生物 工程类
作者
Ülo Niinemets,Markus Reichstein
出处
期刊:Journal of Geophysical Research [Wiley]
卷期号:108 (D7) 被引量:144
标识
DOI:10.1029/2002jd002626
摘要

According to experimental studies, plant emissions of volatile organic compounds (VOC) are controlled by stomata to a varying extent, but the differing responses could not be explained so far. A dynamic emission model developed in a previous study indicated that stomata may limit the emission rate in a nonsteady state conditions, whereas the rate of increase of liquid‐phase volatile concentrations controls the degree to which stomata temporarily curtail the emission. Despite its large predictive capability, potentially large number of volatile physico‐chemical and leaf structural variables are needed for parameterization of such dynamic models, limiting the usefulness of the approach. We conducted a sensitivity analysis to determine the effect of varying VOC distribution between gas‐ and liquid‐phases (Henry's law constant, H , Pa m 3 mol −1 ) and varying internal diffusion conductances in the liquid‐ and gas‐phases. The model was parameterized for three contrasting leaf architectures (conifer, sclerophyll, and mesophytic leaves). The sensitivity analysis indicated that the volatile H value is the key variable affecting the stomatal sensitivity of VOC emissions. Differences in leaf architecture, in particular in leaf liquid volume to area ratio, also modified the emission responses to changes in stomatal aperture, but these structural effects were superimposed by compound gas/liquid phase partitioning. The results of this analysis indicate that major effort in parameterization of dynamic VOC emission models should be directed toward obtaining reliable gas/liquid‐phase equilibria for various plant volatiles, and that these models may readily be applied for leaves with contrasting architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行走De太阳花完成签到,获得积分10
刚刚
隐形曼青应助高高采纳,获得10
刚刚
刚刚
1秒前
木木完成签到,获得积分10
1秒前
星辰大海应助zpctx采纳,获得10
1秒前
超帅的成败完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
华仔应助zcy采纳,获得10
2秒前
jms发布了新的文献求助10
2秒前
yy发布了新的文献求助10
2秒前
wan发布了新的文献求助20
3秒前
温冰雪应助俭朴山水采纳,获得10
3秒前
归尘发布了新的文献求助10
3秒前
科研通AI6应助焦糖色采纳,获得10
3秒前
秀丽小猫咪应助六块石头采纳,获得100
5秒前
5秒前
5秒前
上官若男应助直率的南琴采纳,获得10
6秒前
cheryjay发布了新的文献求助10
6秒前
研友_VZG7GZ应助koori采纳,获得10
6秒前
LMH完成签到 ,获得积分10
6秒前
6秒前
6秒前
rainsy发布了新的文献求助10
6秒前
6秒前
阿may完成签到,获得积分10
7秒前
隐形曼青应助东郭雁梅采纳,获得10
7秒前
7秒前
7秒前
Rain完成签到,获得积分10
8秒前
达达完成签到,获得积分10
8秒前
HC发布了新的文献求助10
9秒前
kook完成签到,获得积分10
10秒前
10秒前
黄浩文发布了新的文献求助10
10秒前
10秒前
西柚发布了新的文献求助10
11秒前
小包谷完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609676
求助须知:如何正确求助?哪些是违规求助? 4694236
关于积分的说明 14881785
捐赠科研通 4720035
什么是DOI,文献DOI怎么找? 2544827
邀请新用户注册赠送积分活动 1509694
关于科研通互助平台的介绍 1472981