SciHub
文献互助
期刊查询
一搜即达
科研导航
即时热点
交流社区
登录
注册
发布
文献
求助
首页
我的求助
捐赠本站
亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!
Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization
迭代重建
全变差去噪
正规化(语言学)
迭代法
变化(天文学)
医学影像学
数学
计算机科学
算法
图像(数学)
人工智能
物理
天体物理学
作者
Xue Dong,
Tianye Niu,
Lei Zhu
出处
期刊:
Medical Physics
[Wiley]
日期:2014-04-23
卷期号:41 (5): 051909-051909
被引量:67
链接
nih.gov
doi.org
标识
DOI:10.1118/1.4870375
摘要
Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical properties of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan©600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ∼14 without blurring the fine structures in the sinus area. Conclusions: The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.
求助该文献
最长约 10秒,即可获得该文献文件
相关文献
科研通AI机器人已完成分析
对不起,本页面需要您登录以后才可查看
进入登录/注册页面
科研通智能强力驱动
Strongly Powered by AbleSci AI
我的文献求助列表
浏览历史
一分钟了解求助规则
|
捐赠本站
|
历史今天
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho
发布了新的
文献求助
10
3秒前
格林
发布了新的
文献求助
10
4秒前
研友_VZG7GZ
的
应助
被
ZHI
采纳,获得
10
33秒前
信封
完成签到
,获得积分
10
48秒前
mmyhn
上传了
应助文件
1分钟前
脑洞疼
上传了
应助文件
1分钟前
科研通AI5
上传了
应助文件
1分钟前
难过的踏歌
完成签到,获得积分
10
1分钟前
一定能成功!
发布了新的
文献求助
10
1分钟前
jiang伟
完成签到,获得积分
20
1分钟前
Owen
的
应助
被
科研通管家
采纳,获得
10
1分钟前
Xiaoxiao
的
应助
被
科研通管家
采纳,获得
10
1分钟前
所所
的
应助
被
科研通管家
采纳,获得
10
1分钟前
Xiaoxiao
的
应助
被
科研通管家
采纳,获得
10
1分钟前
科研通AI2S
的
应助
被
科研通管家
采纳,获得
10
1分钟前
Xiaoxiao
的
应助
被
科研通管家
采纳,获得
10
1分钟前
科研通AI2S
上传了
应助文件
1分钟前
两个轮
完成签到
,获得积分
10
1分钟前
Augustines
完成签到,获得积分
10
1分钟前
DoubleW
完成签到
,获得积分
10
1分钟前
一定能成功!
完成签到,获得积分
10
2分钟前
sunran0
完成签到
,获得积分
10
2分钟前
情怀
的
应助
被
carrieschen
采纳,获得
10
2分钟前
科研通AI2S
上传了
应助文件
2分钟前
KSung
完成签到
,获得积分
10
2分钟前
传奇3
的
应助
被
精灵夜雨
采纳,获得
10
3分钟前
蓝鲸
完成签到
,获得积分
10
3分钟前
爆米花
的
应助
被
科研通管家
采纳,获得
10
3分钟前
科研通AI2S
的
应助
被
科研通管家
采纳,获得
10
3分钟前
完美世界
的
应助
被
科研通管家
采纳,获得
30
3分钟前
Xiaoxiao
的
应助
被
科研通管家
采纳,获得
10
3分钟前
Xiaoxiao
的
应助
被
科研通管家
采纳,获得
10
3分钟前
传奇3
上传了
应助文件
4分钟前
精灵夜雨
发布了新的
文献求助
10
4分钟前
在水一方
上传了
应助文件
4分钟前
KDS
发布了新的
文献求助
10
4分钟前
酷酷问夏
完成签到
,获得积分
10
4分钟前
mmyhn
上传了
应助文件
4分钟前
丸子
完成签到
,获得积分
10
4分钟前
科目三
上传了
应助文件
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling
3000
Production Logging: Theoretical and Interpretive Elements
2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes
2500
Structural Load Modelling and Combination for Performance and Safety Evaluation
800
Conference Record, IAS Annual Meeting 1977
610
Interest Rate Modeling. Volume 3: Products and Risk Management
600
Interest Rate Modeling. Volume 2: Term Structure Models
600
热门求助领域
(近24小时)
化学
材料科学
生物
医学
工程类
有机化学
生物化学
物理
纳米技术
计算机科学
内科学
化学工程
复合材料
基因
遗传学
物理化学
催化作用
量子力学
光电子学
冶金
热门帖子
关注
科研通微信公众号,转发送积分
3555707
求助须知:如何正确求助?哪些是违规求助?
3131341
关于积分的说明
9390816
捐赠科研通
2831055
什么是DOI,文献DOI怎么找?
1556317
邀请新用户注册赠送积分活动
726483
科研通“疑难数据库(出版商)”最低求助积分说明
715803
今日热心研友
VDC
21
150
爱静静
5
260
Xiaoxiao
15
130
NicoLi
22
30
Leon
8
80
Qi
16
时间不移民
140
YifanWang
8
30
小林太郎
100
mmyhn
8
浮生若梦
4
40
man
4
40
MchemG
8
目目
80
归尘
60
Magali
5
H华ua
40
我有一头小毛驴
40
caia
40
YJM
40
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10