The gait deviation index: A new comprehensive index of gait pathology

步态 双瘫 物理医学与康复 步态分析 索引(排版) 运动学 计算机科学 特征(语言学) 人工智能 脑瘫 模式识别(心理学) 医学 语言学 哲学 物理 经典力学 万维网
作者
Michael Schwartz,Adam Rozumalski
出处
期刊:Gait & Posture [Elsevier]
卷期号:28 (3): 351-357 被引量:628
标识
DOI:10.1016/j.gaitpost.2008.05.001
摘要

This article describes a new multivariate measure of overall gait pathology called the Gait Deviation Index (GDI). The first step in developing the GDI was to use kinematic data from a large number of walking strides to derive a set of mutually independent joint rotation patterns that efficiently describe gait. These patterns are called gait features. Linear combinations of the first 15 gait features produced a 98% faithful reconstruction of both the data from which they were derived and 1000 validation strides not used in the derivation. The GDI was then defined as a scaled distance between the 15 gait feature scores for a subject and the average of the same 15 gait feature scores for a control group of typically developing (TD) children. Concurrent and face validity data for the GDI are presented through comparisons with the Gillette Gait Index (GGI), Gillette Functional Assessment Questionnaire Walking Scale (FAQ), and topographic classifications within the diagnosis of Cerebral Palsy (CP). The GDI and GGI are strongly correlated (r(2)=0.56). The GDI scales with FAQ level, distinguishes levels from one another, and is normally distributed across FAQ levels six to ten and among TD children. The GDI also scales with respect to clinical involvement based on topographic CP classification in Hemiplegia Types I-IV, Diplegia, Triplegia and Quadriplegia. The GDI offers an alternative to the GGI as a comprehensive quantitative gait pathology index, and can be readily computed using the electronic addendum provided with this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucky完成签到,获得积分10
1秒前
谨慎涵柏发布了新的文献求助10
1秒前
SciGPT应助心灵美发卡采纳,获得10
1秒前
彩色的蓝天完成签到,获得积分10
1秒前
hbb发布了新的文献求助10
1秒前
3137874883发布了新的文献求助10
3秒前
蒋若风发布了新的文献求助10
3秒前
123完成签到,获得积分10
3秒前
狗剩子完成签到,获得积分10
3秒前
Lvj完成签到,获得积分10
4秒前
bkagyin应助马保国123采纳,获得10
4秒前
4秒前
5秒前
大个应助乐观的幼珊采纳,获得10
5秒前
5秒前
5秒前
5秒前
顺顺完成签到,获得积分10
7秒前
7秒前
小马甲应助a1oft采纳,获得10
7秒前
Keke完成签到,获得积分10
7秒前
8秒前
自然秋柳发布了新的文献求助10
8秒前
candy6663339完成签到,获得积分10
8秒前
weiwei完成签到,获得积分10
8秒前
大个应助苗条的山晴采纳,获得10
9秒前
努力发一区完成签到 ,获得积分0
9秒前
蒋时晏应助恶恶么v采纳,获得30
9秒前
10秒前
10秒前
gennp完成签到,获得积分10
10秒前
gg完成签到,获得积分10
10秒前
1111发布了新的文献求助10
10秒前
情怀应助wjh采纳,获得10
11秒前
11秒前
Hey关闭了Hey文献求助
11秒前
学渣向下完成签到,获得积分10
11秒前
咚咚咚发布了新的文献求助10
11秒前
12秒前
willen完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759