Identification of common gene networks responsive to radiotherapy in human cancer cells

抗辐射性 小桶 基因 生物 计算生物学 辐射敏感性 癌症 癌细胞 癌症研究 基因表达 基因本体论 生物信息学 遗传学 放射治疗 医学 细胞培养 内科学
作者
D.Q. Hou,Liang Chen,Baohui Liu,L-N Song,Taiyong Fang
出处
期刊:Cancer Gene Therapy [Springer Nature]
卷期号:21 (12): 542-548 被引量:12
标识
DOI:10.1038/cgt.2014.62
摘要

Identification of the genes that are differentially expressed between radiosensitive and radioresistant cancers by global gene analysis may help to elucidate the mechanisms underlying tumor radioresistance and improve the efficacy of radiotherapy. An integrated analysis was conducted using publicly available GEO datasets to detect differentially expressed genes (DEGs) between cancer cells exhibiting radioresistance and cancer cells exhibiting radiosensitivity. Gene Ontology (GO) enrichment analyses, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and protein-protein interaction (PPI) networks analysis were also performed. Five GEO datasets including 16 samples of radiosensitive cancers and radioresistant cancers were obtained. A total of 688 DEGs across these studies were identified, of which 374 were upregulated and 314 were downregulated in radioresistant cancer cell. The most significantly enriched GO terms were regulation of transcription, DNA-dependent (GO: 0006355, P=7.00E-09) for biological processes, while those for molecular functions was protein binding (GO: 0005515, P=1.01E-28), and those for cellular component was cytoplasm (GO: 0005737, P=2.81E-26). The most significantly enriched pathway in our KEGG analysis was Pathways in cancer (P=4.20E-07). PPI network analysis showed that IFIH1 (Degree=33) was selected as the most significant hub protein. This integrated analysis may help to predict responses to radiotherapy and may also provide insights into the development of individualized therapies and novel therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
刚刚
shunbaop完成签到,获得积分10
刚刚
凨隹发布了新的文献求助10
刚刚
sunsuan完成签到,获得积分10
刚刚
傅诗淇完成签到,获得积分20
1秒前
Hwalnut完成签到,获得积分10
1秒前
汉堡包应助土豆采纳,获得10
2秒前
江睿曦发布了新的文献求助30
2秒前
2秒前
江树远完成签到 ,获得积分10
2秒前
2秒前
CAOHOU应助科研通管家采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助150
2秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
xiaoxuan完成签到 ,获得积分10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得20
3秒前
Gxmmmm_应助科研通管家采纳,获得10
3秒前
3秒前
笔记本应助科研通管家采纳,获得150
3秒前
Maestro_S应助科研通管家采纳,获得10
3秒前
Maestro_S应助科研通管家采纳,获得10
3秒前
不知发布了新的文献求助10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Zx_1993应助科研通管家采纳,获得10
3秒前
桐桐应助苗浩阳采纳,获得10
3秒前
Dean应助科研通管家采纳,获得50
4秒前
4秒前
LaTeXer应助科研通管家采纳,获得100
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
852应助科研通管家采纳,获得30
4秒前
dew应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得20
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4921720
求助须知:如何正确求助?哪些是违规求助? 4192827
关于积分的说明 13023256
捐赠科研通 3964364
什么是DOI,文献DOI怎么找? 2172939
邀请新用户注册赠送积分活动 1190594
关于科研通互助平台的介绍 1099777