Nonlinear Dynamic Modeling of Neuron Action Potential Threshold During Synaptically Driven Broadband Intracellular Activity

非线性系统 生物系统 偏移量(计算机科学) Spike(软件开发) 宽带 神经生理学 尖峰电位 膜电位 突触后电位 提炼听神经的脉冲 时间常数 控制理论(社会学) 计算机科学 神经科学 物理 生物物理学 人工智能 化学 电信 工程类 去极化 电气工程 控制(管理) 程序设计语言 生物化学 量子力学 受体 生物 软件工程
作者
Ude Lu,Shane Roach,Dong Song,Theodore W. Berger
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:59 (3): 706-716 被引量:10
标识
DOI:10.1109/tbme.2011.2178241
摘要

Activity-dependent variation of neuronal thresholds for action potential (AP) generation is one of the key determinants of spike-train temporal-pattern transformations from presynaptic to postsynaptic spike trains. In this study, we model the nonlinear dynamics of the threshold variation during synaptically driven broadband intracellular activity. First, membrane potentials of single CA1 pyramidal cells were recorded under physiologically plausible broadband stimulation conditions. Second, a method was developed to measure AP thresholds from the continuous recordings of membrane potentials. It involves measuring the turning points of APs by analyzing the third-order derivatives of the membrane potentials. Four stimulation paradigms with different temporal patterns were applied to validate this method by comparing the measured AP turning points and the actual AP thresholds estimated with varying stimulation intensities. Results show that the AP turning points provide consistent measurement of the AP thresholds, except for a constant offset. It indicates that 1) the variation of AP turning points represents the nonlinearities of threshold dynamics; and 2) an optimization of the constant offset is required to achieve accurate spike prediction. Third, a nonlinear dynamical third-order Volterra model was built to describe the relations between the threshold dynamics and the AP activities. Results show that the model can predict threshold accurately based on the preceding APs. Finally, the dynamic threshold model was integrated into a previously developed single neuron model and resulted in a 33% improvement in spike prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助马儿咯咯哒采纳,获得10
1秒前
尖叫尖叫发布了新的文献求助20
1秒前
柴郡喵完成签到,获得积分10
2秒前
2秒前
跳跃毒娘发布了新的文献求助10
2秒前
菜小芽完成签到 ,获得积分10
2秒前
华雍完成签到,获得积分10
3秒前
lincool完成签到,获得积分10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
ZR14124发布了新的文献求助10
7秒前
MAKEYF完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助30
7秒前
上官若男应助Yuanyuan采纳,获得10
9秒前
dnn_发布了新的文献求助10
9秒前
自然若完成签到,获得积分10
9秒前
11秒前
wkktx发布了新的文献求助10
11秒前
优美紫槐发布了新的文献求助10
12秒前
周新运完成签到,获得积分10
12秒前
13秒前
阿奶完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
14秒前
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535