Nonlinear Dynamic Modeling of Neuron Action Potential Threshold During Synaptically Driven Broadband Intracellular Activity

非线性系统 生物系统 偏移量(计算机科学) Spike(软件开发) 宽带 神经生理学 尖峰电位 膜电位 突触后电位 提炼听神经的脉冲 时间常数 控制理论(社会学) 计算机科学 神经科学 物理 生物物理学 人工智能 化学 电信 工程类 去极化 电气工程 控制(管理) 程序设计语言 生物化学 量子力学 受体 生物 软件工程
作者
Ude Lu,Shane Roach,Dong Song,Theodore W. Berger
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:59 (3): 706-716 被引量:10
标识
DOI:10.1109/tbme.2011.2178241
摘要

Activity-dependent variation of neuronal thresholds for action potential (AP) generation is one of the key determinants of spike-train temporal-pattern transformations from presynaptic to postsynaptic spike trains. In this study, we model the nonlinear dynamics of the threshold variation during synaptically driven broadband intracellular activity. First, membrane potentials of single CA1 pyramidal cells were recorded under physiologically plausible broadband stimulation conditions. Second, a method was developed to measure AP thresholds from the continuous recordings of membrane potentials. It involves measuring the turning points of APs by analyzing the third-order derivatives of the membrane potentials. Four stimulation paradigms with different temporal patterns were applied to validate this method by comparing the measured AP turning points and the actual AP thresholds estimated with varying stimulation intensities. Results show that the AP turning points provide consistent measurement of the AP thresholds, except for a constant offset. It indicates that 1) the variation of AP turning points represents the nonlinearities of threshold dynamics; and 2) an optimization of the constant offset is required to achieve accurate spike prediction. Third, a nonlinear dynamical third-order Volterra model was built to describe the relations between the threshold dynamics and the AP activities. Results show that the model can predict threshold accurately based on the preceding APs. Finally, the dynamic threshold model was integrated into a previously developed single neuron model and resulted in a 33% improvement in spike prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助庄里憨笑采纳,获得10
刚刚
青黛发布了新的文献求助10
1秒前
情怀应助顺心的筮采纳,获得10
1秒前
2秒前
TingWan发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
火星上送终完成签到,获得积分10
3秒前
4秒前
丘比特应助zzl采纳,获得10
4秒前
安静的缘分完成签到,获得积分10
4秒前
田様应助跳跃的明雪采纳,获得10
4秒前
4秒前
璇22发布了新的文献求助10
4秒前
xxfsx应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
yyzhou应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得30
5秒前
xxfsx应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
yyzhou应助科研通管家采纳,获得10
5秒前
5秒前
SciGPT应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525810
求助须知:如何正确求助?哪些是违规求助? 4615949
关于积分的说明 14550994
捐赠科研通 4554057
什么是DOI,文献DOI怎么找? 2495680
邀请新用户注册赠送积分活动 1476168
关于科研通互助平台的介绍 1447839