生态系统
生物量(生态学)
环境科学
环境化学
溶解有机碳
土壤碳
土壤有机质
草原
土壤水分
陆地生态系统
生态学
氮气
农学
土壤科学
化学
生物
有机化学
作者
Cunzheng Wei,Qiang Yu,Edith Bai,Xiao‐Tao Lü,Qi Li,Jianyang Xia,Paul Kardol,Wenju Liang,Zhengwen Wang,Xingguo Han
摘要
Abstract Soil carbon (C) and nitrogen (N) stoichiometry is a main driver of ecosystem functioning. Global N enrichment has greatly changed soil C : N ratios, but how altered resource stoichiometry influences the complexity of direct and indirect interactions among plants, soils, and microbial communities has rarely been explored. Here, we investigated the responses of the plant‐soil‐microbe system to multi‐level N additions and the role of dissolved organic carbon ( DOC ) and inorganic N stoichiometry in regulating microbial biomass in semiarid grassland in northern China. We documented a significant positive correlation between DOC and inorganic N across the N addition gradient, which contradicts the negative nonlinear correlation between nitrate accrual and DOC availability commonly observed in natural ecosystems. Using hierarchical structural equation modeling, we found that soil acidification resulting from N addition, rather than changes in the plant community, was most closely related to shifts in soil microbial community composition and decline of microbial respiration. These findings indicate a down‐regulating effect of high N availability on plant–microbe interactions. That is, with the limiting factor for microbial biomass shifting from resource stoichiometry to soil acidity, N enrichment weakens the bottom‐up control of soil microorganisms by plant‐derived C sources. These results highlight the importance of integratively studying the plant‐soil‐microbe system in improving our understanding of ecosystem functioning under conditions of global N enrichment.
科研通智能强力驱动
Strongly Powered by AbleSci AI