LIDAR and vision-based real-time traffic sign detection and recognition algorithm for intelligent vehicle

计算机科学 交通标志 人工智能 稳健性(进化) 计算机视觉 交通标志识别 激光雷达 直方图 传感器融合 支持向量机 模式识别(心理学) 符号(数学) 遥感 数学 生物化学 基因 图像(数学) 地质学 数学分析 化学
作者
Lipu Zhou,Zhidong Deng
标识
DOI:10.1109/itsc.2014.6957752
摘要

Real-time traffic sign detection and recognition are essential and challenging tasks for intelligent vehicle. The previous works mainly focus on detecting and recognizing traffic sign based on images captured by onboard camera. Visual features of traffic sign such as color, shape, and appearance, however, are often sensitive to illumination condition, angle of view, etc. Except for camera, LIDAR also provides important and alternative features of traffic sign. The fusion of complementary data acquired from both sensors can improve the robustness of the algorithm, especially when data from either of them are of low quality. For this reason, we propose a new traffic sign detection and recognition algorithm based on the fusion of camera and LIDAR data. Specifically, position prior, color, laser reflectivity, and 3D geometric features are integrated to detect traffic sign in a 3D space. In most of previous works, different colors of traffic signs are individually handled in a specific color space, which generally results in the use of many thresholds or multiple classifiers. In this paper, we use combined color spaces (CCS) such that traffic sign colors can be entirely treated as one class. For traffic sign recognition, in order to improve the robustness to any viewpoint variation, regions of interest (ROIs), which suffer from perspective deformation, are rectified first by fusing LIDAR and camera data. Then the histogram of oriented gradient (HOG) feature and linear support vector machines (SVMs) are used to classify traffic signs. Finally, extensive experimental results in challenging conditions show that our algorithm is real-time and robust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助曾经二娘采纳,获得10
刚刚
乐观沛白发布了新的文献求助10
2秒前
yyygc完成签到,获得积分10
3秒前
西西发布了新的文献求助10
6秒前
oky完成签到 ,获得积分10
8秒前
传奇3应助Ler采纳,获得10
8秒前
852应助yyygc采纳,获得10
9秒前
小蘑菇应助HLT采纳,获得10
10秒前
领导范儿应助鄂成危采纳,获得10
10秒前
完美世界应助乐观沛白采纳,获得10
10秒前
科研通AI2S应助木木酱采纳,获得10
14秒前
14秒前
17秒前
在水一方应助宋博采纳,获得10
17秒前
深情安青应助星陨采纳,获得10
18秒前
20秒前
20秒前
溧雁发布了新的文献求助30
21秒前
bkagyin应助海潮采纳,获得10
21秒前
万能图书馆应助心杨采纳,获得10
22秒前
22秒前
23秒前
23秒前
23秒前
Ler发布了新的文献求助10
24秒前
kyf完成签到,获得积分10
25秒前
25秒前
无花果应助爽o采纳,获得10
25秒前
HLT发布了新的文献求助10
26秒前
haowu发布了新的文献求助10
26秒前
7Steven7完成签到 ,获得积分10
26秒前
26秒前
程未央_12完成签到,获得积分10
27秒前
月光发布了新的文献求助10
27秒前
dent强完成签到 ,获得积分10
28秒前
Jasper应助Endeavor采纳,获得10
29秒前
宋博发布了新的文献求助10
29秒前
29秒前
星陨发布了新的文献求助10
30秒前
dengyan完成签到,获得积分10
30秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157455
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878686
捐赠科研通 2467233
什么是DOI,文献DOI怎么找? 1313279
科研通“疑难数据库(出版商)”最低求助积分说明 630380
版权声明 601919