Internal thermal resistance test and analysis of power device based on structure function

热阻 材料科学 结温 热的 分层(地质) 复合材料 内阻 热分析 热质量 瞬态(计算机编程) 电子工程 光电子学 功率(物理) 计算机科学 工程类 热力学 物理 操作系统 生物 古生物学 构造学 俯冲 电池(电)
作者
Bin Zhou,Xunping Li,Yang Shaohua,Xiaoqi He
标识
DOI:10.1109/icept.2013.6756646
摘要

Five group thermal resistance test samples of the power devices were performed high temperature aging at 150°C for 0h, 24h, 48h, 72h, 96h respectively, then the maximum thermal test current without device self-heating temperature rise of 5mA was determined, and the transient thermal resistance test method was employed to obtain the heat transient response curves containing the thermal resistance and heat capacity parameters respectively. Numerical convolution method and structure function analysis techniques were used to acquire total junction-case thermal resistances of power devices, and the internal thermal resistance of each layer's package structure of the chip, the adhesive and the case was separated from the total junction-case thermal resistances. Finally, the scanning acoustic test was performed on the five group samples to validate the package defect and the effect of typical package defect on internal thermal resistance of device was analyzed. The results show that the structure function analysis method can effectively separate the thermal resistance of internal each layer package structure. The excursion of structure function and die attachment delamination of tested sample were found after 96 hours aging. The excursion of structure function compared with the original curve can reflect the internal package quality of power device. Generally, the package defect, such as voids, delamination, etc. could induce the increase of internal thermal resistance. The structure function analysis method provides a favorable reference to thermal reliability design and analysis of power devices. Reducing the thermal resistance of the adhesive layer is the key to improving the overall heat dissipation of the device.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
神勇难胜完成签到 ,获得积分10
刚刚
邱海华发布了新的文献求助10
刚刚
1秒前
mxr完成签到,获得积分10
1秒前
khh完成签到 ,获得积分10
2秒前
Akim应助vvA11采纳,获得10
2秒前
2秒前
2秒前
蓝天发布了新的文献求助10
4秒前
keyaner发布了新的文献求助10
4秒前
是谁还没睡完成签到 ,获得积分10
4秒前
4秒前
5秒前
科研通AI6应助yangyajie采纳,获得10
6秒前
丘比特应助lawrenceip0926采纳,获得10
6秒前
6秒前
KIKI完成签到,获得积分10
6秒前
fuchao发布了新的文献求助10
6秒前
khh关注了科研通微信公众号
6秒前
7秒前
李伟完成签到,获得积分10
7秒前
星辰完成签到,获得积分10
7秒前
sakyadamo发布了新的文献求助10
7秒前
科研通AI6应助上山的吗喽采纳,获得10
8秒前
悦耳的灵完成签到 ,获得积分10
8秒前
cheng发布了新的文献求助10
9秒前
9秒前
Vv完成签到 ,获得积分10
9秒前
小二郎应助Jerez采纳,获得10
10秒前
Jasper应助韩修杰采纳,获得10
10秒前
orixero应助10711采纳,获得10
10秒前
积极嚓茶完成签到,获得积分10
11秒前
Hiiiiii发布了新的文献求助10
11秒前
11秒前
敬之发布了新的文献求助10
12秒前
研友_VZG7GZ应助清欢采纳,获得10
12秒前
12秒前
12秒前
可爱的函函应助谦让靖儿采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901