Internal thermal resistance test and analysis of power device based on structure function

热阻 材料科学 结温 热的 分层(地质) 复合材料 内阻 热分析 热质量 瞬态(计算机编程) 电子工程 光电子学 功率(物理) 计算机科学 工程类 热力学 物理 操作系统 生物 古生物学 构造学 俯冲 电池(电)
作者
Bin Zhou,Xunping Li,Yang Shaohua,Xiaoqi He
标识
DOI:10.1109/icept.2013.6756646
摘要

Five group thermal resistance test samples of the power devices were performed high temperature aging at 150°C for 0h, 24h, 48h, 72h, 96h respectively, then the maximum thermal test current without device self-heating temperature rise of 5mA was determined, and the transient thermal resistance test method was employed to obtain the heat transient response curves containing the thermal resistance and heat capacity parameters respectively. Numerical convolution method and structure function analysis techniques were used to acquire total junction-case thermal resistances of power devices, and the internal thermal resistance of each layer's package structure of the chip, the adhesive and the case was separated from the total junction-case thermal resistances. Finally, the scanning acoustic test was performed on the five group samples to validate the package defect and the effect of typical package defect on internal thermal resistance of device was analyzed. The results show that the structure function analysis method can effectively separate the thermal resistance of internal each layer package structure. The excursion of structure function and die attachment delamination of tested sample were found after 96 hours aging. The excursion of structure function compared with the original curve can reflect the internal package quality of power device. Generally, the package defect, such as voids, delamination, etc. could induce the increase of internal thermal resistance. The structure function analysis method provides a favorable reference to thermal reliability design and analysis of power devices. Reducing the thermal resistance of the adhesive layer is the key to improving the overall heat dissipation of the device.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术小牛发布了新的文献求助10
刚刚
Lexi完成签到,获得积分10
刚刚
灵萱发布了新的文献求助30
1秒前
殷勤的紫槐应助yyyy采纳,获得200
1秒前
2秒前
单薄的飞风完成签到,获得积分10
3秒前
清风明月完成签到,获得积分10
4秒前
小马甲应助345678与采纳,获得10
5秒前
33完成签到,获得积分10
6秒前
学术小牛完成签到,获得积分10
6秒前
天天快乐应助洁净的白凡采纳,获得30
6秒前
黄兆强完成签到 ,获得积分10
6秒前
Owen应助靖旎采纳,获得10
7秒前
小二郎应助小冯采纳,获得10
7秒前
Ikaros发布了新的文献求助10
7秒前
8秒前
科研通AI6应助AKA采纳,获得10
10秒前
10秒前
Lucas应助大辉采纳,获得10
11秒前
11秒前
11秒前
slycmd发布了新的文献求助10
13秒前
上官若男应助bb采纳,获得10
14秒前
寒冷天亦发布了新的文献求助10
15秒前
白衣修身发布了新的文献求助10
15秒前
16秒前
壮观的夏蓉完成签到,获得积分0
17秒前
搜集达人应助如风采纳,获得10
18秒前
紫薇发布了新的文献求助10
18秒前
学吧发布了新的文献求助10
18秒前
CipherSage应助淡定茉莉采纳,获得10
18秒前
Ikaros完成签到,获得积分10
19秒前
晴空万里完成签到 ,获得积分10
20秒前
20秒前
21秒前
寒冷天亦完成签到,获得积分10
21秒前
sunoopp发布了新的文献求助10
23秒前
活泼的巧曼完成签到,获得积分10
24秒前
正直的蚂蚁完成签到,获得积分20
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548