热阻
材料科学
结温
热的
分层(地质)
复合材料
内阻
热分析
热质量
瞬态(计算机编程)
电子工程
光电子学
功率(物理)
计算机科学
工程类
热力学
物理
操作系统
生物
古生物学
构造学
俯冲
电池(电)
作者
Bin Zhou,Xunping Li,Yang Shaohua,Xiaoqi He
标识
DOI:10.1109/icept.2013.6756646
摘要
Five group thermal resistance test samples of the power devices were performed high temperature aging at 150°C for 0h, 24h, 48h, 72h, 96h respectively, then the maximum thermal test current without device self-heating temperature rise of 5mA was determined, and the transient thermal resistance test method was employed to obtain the heat transient response curves containing the thermal resistance and heat capacity parameters respectively. Numerical convolution method and structure function analysis techniques were used to acquire total junction-case thermal resistances of power devices, and the internal thermal resistance of each layer's package structure of the chip, the adhesive and the case was separated from the total junction-case thermal resistances. Finally, the scanning acoustic test was performed on the five group samples to validate the package defect and the effect of typical package defect on internal thermal resistance of device was analyzed. The results show that the structure function analysis method can effectively separate the thermal resistance of internal each layer package structure. The excursion of structure function and die attachment delamination of tested sample were found after 96 hours aging. The excursion of structure function compared with the original curve can reflect the internal package quality of power device. Generally, the package defect, such as voids, delamination, etc. could induce the increase of internal thermal resistance. The structure function analysis method provides a favorable reference to thermal reliability design and analysis of power devices. Reducing the thermal resistance of the adhesive layer is the key to improving the overall heat dissipation of the device.
科研通智能强力驱动
Strongly Powered by AbleSci AI