Biomechanical analysis of silicon microelectrode-induced strain in the brain

微电极 电极 材料科学 流离失所(心理学) 生物医学工程 神经假体 拉伤 脑组织 有限元法 联轴节(管道) 多电极阵列 复合材料 化学 神经科学 解剖 医学 物理 热力学 物理化学 生物 心理治疗师 心理学
作者
Hyunjung Lee,Ravi V. Bellamkonda,Wei Sun,Marc E. Levenston
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:2 (4): 81-89 被引量:257
标识
DOI:10.1088/1741-2560/2/4/003
摘要

The ability to successfully interface the brain to external electrical systems is important both for fundamental understanding of our nervous system and for the development of neuroprosthetics. Silicon microelectrode arrays offer great promise in realizing this potential. However, when they are implanted into the brain, recording sensitivity is lost due to inflammation and astroglial scarring around the electrode. The inflammation and astroglial scar are thought to result from acute injury during electrode insertion as well as chronic injury caused by micromotion around the implanted electrode. To evaluate the validity of this assumption, the finite element method (FEM) was employed to analyze the strain fields around a single Michigan Si microelectrode due to simulated micromotion. Micromotion was mimicked by applying a force to the electrode, fixing the boundaries of the brain region and applying appropriate symmetry conditions to nodes lying on symmetry planes. Characteristics of the deformation fields around the electrode including maximum electrode displacement, strain fields and relative displacement between the electrode and the adjacent tissue were examined for varying degrees of physical coupling between the brain and the electrode. Our analysis demonstrates that when physical coupling between the electrode and the brain increases, the micromotion-induced strain of tissue around the electrode decreases as does the relative slip between the electrode and the brain. These results support the use of neuro-integrative coatings on electrode arrays as a means to reduce the micromotion-induced injury response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Neil完成签到,获得积分10
刚刚
清脆南蕾完成签到,获得积分10
1秒前
骐骥完成签到,获得积分10
1秒前
1秒前
HY完成签到,获得积分10
2秒前
Hello应助菲菲姐1988采纳,获得10
2秒前
2秒前
故意的如冬完成签到,获得积分10
3秒前
大钻石完成签到,获得积分10
3秒前
伊雪儿完成签到,获得积分10
3秒前
chuling发布了新的文献求助10
4秒前
4秒前
高高高完成签到 ,获得积分10
4秒前
漂亮采波发布了新的文献求助10
4秒前
5秒前
王大锤完成签到,获得积分10
5秒前
5秒前
吕布完成签到,获得积分10
5秒前
NexusExplorer应助鲤鱼一手采纳,获得10
6秒前
gomm完成签到,获得积分10
6秒前
大钻石发布了新的文献求助10
6秒前
坦率的文龙完成签到,获得积分10
7秒前
8秒前
稳重的糜发布了新的文献求助10
8秒前
领导范儿应助tysun采纳,获得10
9秒前
帅气男孩发布了新的文献求助10
9秒前
CipherSage应助快乐小子采纳,获得10
9秒前
巴哒完成签到,获得积分10
9秒前
张叁完成签到 ,获得积分10
9秒前
10秒前
10秒前
Leukocyte完成签到 ,获得积分10
10秒前
微笑的千山完成签到,获得积分10
10秒前
槑槑完成签到 ,获得积分20
10秒前
科研通AI6应助asdf采纳,获得10
10秒前
迷你的白开水完成签到,获得积分10
12秒前
木月子完成签到,获得积分10
12秒前
衡阳完成签到,获得积分10
13秒前
开始完成签到,获得积分10
13秒前
Dreamer0422完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571205
求助须知:如何正确求助?哪些是违规求助? 3992388
关于积分的说明 12357887
捐赠科研通 3665364
什么是DOI,文献DOI怎么找? 2020042
邀请新用户注册赠送积分活动 1054379
科研通“疑难数据库(出版商)”最低求助积分说明 941973