混合模型
计算
计算复杂性理论
区间(图论)
算法
估计理论
高斯分布
计算机科学
功能(生物学)
工作(物理)
区间估计
表(数据库)
期望最大化算法
数学
最大似然
人工智能
统计
置信区间
数据挖掘
工程类
物理
组合数学
生物
机械工程
进化生物学
量子力学
作者
Hidenori Watanabe,Shogo Muramatsu,Hisakazu Kikuchi
标识
DOI:10.1109/iscas.2010.5537044
摘要
This work proposes a low complexity computation of EM algorithm for Gaussian mixture model(GMM) and accelerates the parameter estimation. In previous works, the authors revealed that the computational complexity of GMM-based classification can be reduced by using an interval calculation technique. This work applies the idea to EM algorithm for GMM parameter estimation. From experiments, it is confirmed that the computational speed of the proposal achieves more than twice that of the standard method with 'exp( )' function. The relative errors are less than 0.6% and 0.053% when the number of bits for table addressing are 4 and 8, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI