A simple model to determine the trends of electric-field-enhanced water dissociation in a bipolar membrane. II. Consideration of water electrotransport and monolayer asymmetry

化学 离解(化学) 限制电流 电场 热扩散率 电流密度 磁导率 离子 不对称 单层 机械 分析化学(期刊) 热力学 化学物理 电化学 色谱法 电极 物理 物理化学 有机化学 量子力学 生物化学
作者
Tongwen Xu,Rongqiang Fu
出处
期刊:Desalination [Elsevier]
卷期号:190 (1-3): 125-136 被引量:12
标识
DOI:10.1016/j.desal.2005.08.007
摘要

This work elucidates the mechanism of electric-field-enhanced water dissociation. Particular attention has been given to the influences of water electrotransport and monolayer asymmetry on the water dissociation process. A simple model was proposed with consideration of these two factors and mathematically analyzed in term of thickness ratio, fixed group concentration ratio and water diffusivity ratio of the anion selective layer to the cation selective layer on typical current density curves of bipolar membranes. The results suggest that for practical applications, an asymmetric bipolar membrane with proper ion-exchange capacity and high permeability to water is more effective than a symmetric one. Theoretical simulation values were compared with both the theoretically calculated data by a model without consideration of water electrotransport and the experimental current voltage curves. It is shown that the calculated potential across a bipolar membrane is higher at given current density, which permits a more precise prediction of experimental I–V curves for the case of a bipolar membrane with high water permeability. However, for a bipolar membrane with poorer water permeability, it seems that the calculated value with the model without consideration of water electrotransport is closer to the experimental values, but the model with consideration of water electrotransport can effectively predict the over-limiting current density.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
ZZ发布了新的文献求助10
刚刚
丰富的雪糕完成签到,获得积分10
刚刚
酷波er应助花痴的易真采纳,获得10
2秒前
思源应助Mr.Left采纳,获得10
3秒前
3秒前
4秒前
于胜男发布了新的文献求助10
5秒前
5秒前
Shan完成签到 ,获得积分10
5秒前
404发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
10秒前
如意的代真完成签到 ,获得积分10
10秒前
10秒前
我真的不是robot完成签到,获得积分10
10秒前
慕青应助墨殇璃采纳,获得10
13秒前
13秒前
KANG完成签到,获得积分10
13秒前
14秒前
14秒前
廖廖完成签到,获得积分10
16秒前
decademe发布了新的文献求助10
17秒前
Mr.Left发布了新的文献求助10
18秒前
404完成签到,获得积分10
19秒前
勤奋傲云完成签到,获得积分10
20秒前
天玄一刀完成签到,获得积分10
21秒前
23秒前
23秒前
24秒前
神勇的曼雁完成签到,获得积分20
24秒前
24秒前
24秒前
阿啵呲嘚完成签到,获得积分10
25秒前
sfc999完成签到,获得积分10
27秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
28秒前
ll发布了新的文献求助30
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495000
求助须知:如何正确求助?哪些是违规求助? 4592747
关于积分的说明 14438605
捐赠科研通 4525605
什么是DOI,文献DOI怎么找? 2479542
邀请新用户注册赠送积分活动 1464339
关于科研通互助平台的介绍 1437256