A simple model to determine the trends of electric-field-enhanced water dissociation in a bipolar membrane. II. Consideration of water electrotransport and monolayer asymmetry

化学 离解(化学) 限制电流 电场 热扩散率 电流密度 磁导率 离子 不对称 单层 机械 分析化学(期刊) 热力学 化学物理 电化学 色谱法 电极 物理 物理化学 有机化学 量子力学 生物化学
作者
Tongwen Xu,Rongqiang Fu
出处
期刊:Desalination [Elsevier]
卷期号:190 (1-3): 125-136 被引量:12
标识
DOI:10.1016/j.desal.2005.08.007
摘要

This work elucidates the mechanism of electric-field-enhanced water dissociation. Particular attention has been given to the influences of water electrotransport and monolayer asymmetry on the water dissociation process. A simple model was proposed with consideration of these two factors and mathematically analyzed in term of thickness ratio, fixed group concentration ratio and water diffusivity ratio of the anion selective layer to the cation selective layer on typical current density curves of bipolar membranes. The results suggest that for practical applications, an asymmetric bipolar membrane with proper ion-exchange capacity and high permeability to water is more effective than a symmetric one. Theoretical simulation values were compared with both the theoretically calculated data by a model without consideration of water electrotransport and the experimental current voltage curves. It is shown that the calculated potential across a bipolar membrane is higher at given current density, which permits a more precise prediction of experimental I–V curves for the case of a bipolar membrane with high water permeability. However, for a bipolar membrane with poorer water permeability, it seems that the calculated value with the model without consideration of water electrotransport is closer to the experimental values, but the model with consideration of water electrotransport can effectively predict the over-limiting current density.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天发布了新的文献求助10
1秒前
M张发布了新的文献求助10
2秒前
ayu发布了新的文献求助10
2秒前
orixero应助www采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
yang发布了新的文献求助10
4秒前
4秒前
Akim应助结实寒梦采纳,获得10
5秒前
cocu117完成签到,获得积分10
5秒前
5秒前
5秒前
彭于晏应助sam1514采纳,获得10
5秒前
丘比特应助胖虎采纳,获得10
5秒前
YY发布了新的文献求助30
6秒前
在水一方应助EinZwei采纳,获得10
6秒前
嘉博学长完成签到,获得积分10
6秒前
7秒前
毛77发布了新的文献求助30
7秒前
汉堡包应助llllliu采纳,获得10
7秒前
dd完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
yangz发布了新的文献求助10
8秒前
8秒前
深情安青应助晚风采纳,获得10
8秒前
刻苦的安白发布了新的文献求助100
9秒前
cocu117发布了新的文献求助10
9秒前
Xuan完成签到,获得积分10
10秒前
追梦1998发布了新的文献求助10
11秒前
sxp1031发布了新的文献求助10
11秒前
chen发布了新的文献求助10
11秒前
wanci应助洋芋采纳,获得20
11秒前
11秒前
102755发布了新的文献求助10
11秒前
lfchen发布了新的文献求助10
12秒前
xwwdcg发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647471
求助须知:如何正确求助?哪些是违规求助? 4773575
关于积分的说明 15039580
捐赠科研通 4806177
什么是DOI,文献DOI怎么找? 2570137
邀请新用户注册赠送积分活动 1527027
关于科研通互助平台的介绍 1486108