Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis

鼻咽癌 医学 小RNA 肿瘤科 内科学 危险系数 比例危险模型 癌症 生存分析 生物标志物 置信区间 放射治疗 生物 基因 遗传学
作者
Na Liu,Nian-Yong Chen,Rui-Xue Cui,Wen-Fei Li,Yan Li,Rong-Rong Wei,Mei-Yin Zhang,Ying Sun,Bi-Jun Huang,Mo Chen,Qing-Mei He,Ning Jiang,Lei Chen,William C. Cho,Jing‐Ping Yun,Jing Zeng,Li-Zhi Liu,Li Li,Ying Guo,Hui‐Yun Wang,Jun Ma
出处
期刊:Lancet Oncology [Elsevier]
卷期号:13 (6): 633-641 被引量:284
标识
DOI:10.1016/s1470-2045(12)70102-x
摘要

Summary Background MicroRNAs (miRNAs) can be used as prognostic biomarkers in many types of cancer. We aimed to identify miRNAs that were prognostic in patients with nasopharyngeal carcinoma. Methods We retrospectively analysed miRNA expression profiles in 312 paraffin-embedded specimens of nasopharyngeal carcinoma from Sun Yat-sen University Cancer Center (Guangzhou, China) and 18 specimens of non-cancer nasopharyngitis. Using an 873 probe microarray, we assessed associations between miRNA signatures and clinical outcome in a randomly selected 156 samples (training set) and validated findings in the remaining 156 samples (internal validation set). We confirmed the miRNAs signature using quantitative RT-PCR analysis in 156 samples from a second randomisation of the 312 samples, and validated the miRNA signature in 153 samples from the West China Hospital of Sichuan University in Chengdu, China (independent set). We used the Kaplan-Meier method and log-rank tests to estimate correlations of the miRNA signature with disease-free survival (DFS), distant metastasis-free survival (DMFS), and overall survival. Findings 41 miRNAs were differentially expressed between nasopharyngeal carcinoma and non-cancer nasopharyngitis tissues. A signature of five miRNAs, each significantly associated with DFS, was identified in the training set. We calculated a risk score from the signature and classified patients as high risk or low risk. Compared with patients with low-risk scores, patients with high risk scores in the training set had shorter DFS (hazard ratio [HR] 2·73, 95% CI 1·46–5·11; p=0·0019), DMFS (3·48, 1·57–7·75; p=0·0020), and overall survival (2·48, 1·24–4·96; p=0·010). We noted equivalent findings in the internal validation set for DFS (2·47, 1·32–4·61; p=0·0052), DMFS (2·28, 1·09–4·80; p=0·030), and overall survival (2·87, 1·38–5·96; p=0·0051) and in the independent set for DFS (3·16, 1·65–6·04; p=0·0011), DMFS (2·39, 1·05–5·42; p=0·037), and overall survival (3·07, 1·34–7·01; p=0·0082). The five-miRNA signature was an independent prognostic factor. A combination of this signature and TNM stage had better prognostic value than did TNM stage alone in the training set (area under receiver operating characteristics 0·68 [95% CI 0·60–0·76] vs 0·60 [0·52–0·67]; p=0·013), the internal validation set (0·70 [0·61–0·78] vs 0·61 [0·54–0·68]; p=0·012), and the independent set (0·70 [0·62–0·78] vs 0·63 [0·56–0·69]; p=0·032). Interpretation Identification of patients with the five-miRNA signature might add prognostic value to the TNM staging system and inform treatment decisions for patients at high risk of progression. Funding Science Foundation of Chinese Ministry of Health, National Natural Science Foundation of China, Pearl River Scholar Funded Scheme, Guangdong Key Scientific and Technological Innovation Program, Guangdong Natural Science Foundation, Fundamental Research Funds for the Central Universities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
努力向上的小刘完成签到,获得积分10
1秒前
axt发布了新的文献求助10
1秒前
1秒前
科研通AI2S应助燕子采纳,获得10
2秒前
3秒前
再睡亿分钟完成签到,获得积分10
3秒前
婷123完成签到,获得积分10
3秒前
顾矜应助CHOSEN1采纳,获得10
4秒前
传统的青完成签到,获得积分10
5秒前
小黄发布了新的文献求助10
5秒前
5秒前
科研通AI6应助张张采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
充电宝应助吴彦祖采纳,获得10
7秒前
8秒前
科研通AI6应助火星上小珍采纳,获得10
8秒前
毅1关注了科研通微信公众号
10秒前
尼克劳斯发布了新的文献求助10
10秒前
10秒前
彭于彦祖应助TANGGUO采纳,获得200
11秒前
简单的皮卡丘关注了科研通微信公众号
11秒前
量子星尘发布了新的文献求助10
12秒前
拒绝后防化服完成签到,获得积分10
12秒前
沫沫完成签到,获得积分10
12秒前
33完成签到 ,获得积分10
13秒前
科研通AI6应助axt采纳,获得10
13秒前
秋殤发布了新的文献求助10
13秒前
7777777完成签到,获得积分10
14秒前
精忠发布了新的文献求助10
15秒前
yahosun发布了新的文献求助10
16秒前
andrew完成签到,获得积分10
16秒前
无花果应助wentyli采纳,获得10
17秒前
17秒前
19秒前
领导范儿应助wang采纳,获得10
20秒前
热心雨南发布了新的文献求助10
21秒前
科研通AI6应助吃的饱饱呀采纳,获得30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952