A Multivariate Adaptive Exponentially Weighted Moving Average Control Chart

图表 EWMA图表 X-条形图 多元统计 统计 控制图 数学 移动平均线 休哈特个体控制图 计算机科学 过程(计算) 操作系统
作者
Mahmoud A. Mahmoud,Alyaa R. Zahran
出处
期刊:Communications in Statistics [Informa]
卷期号:39 (4): 606-625 被引量:40
标识
DOI:10.1080/03610920902755813
摘要

Abstract A multivariate extension of the adaptive exponentially weighted moving average (AEWMA) control chart is proposed. The new multivariate scheme can detect small and large shifts in the process mean vector effectively. The proposed scheme can be viewed as a smooth combination of a multivariate exponentially weighted moving average (MEWMA) chart and a Shewhart χ2-chart. The optimal design of the proposed chart is given according to a pre-specified in-control average run length and two shift sizes; a small and large shift each measured in terms of the non centrality parameter. The signal resistance of the newly proposed multivariate chart is also given. Comparisons among the new chart, the MEWMA chart, and the combined Shewhart-MEWMA (S-MEWMA) chart in terms of the standard and worst-case average run length profiles are presented. In addition, the three charts are compared with respect to their worst-case signal resistance values. The proposed chart gives somewhat better worst-case ARL and signal resistance values than the competing charts. It also gives better standard ARL performance especially for moderate and large shifts. The effectiveness of our proposed chart is illustrated through an example with simulated data set. Keywords: Adaptive weightingAverage run lengthExponentially weighted moving averageInertiaMultivariate control chartSignal resistanceMathematics Subject Classification: Primary 62P30Secondary 62H99 Acknowledgment The authors greatly appreciate the helpful comments of the Editor and two anonymous referees. Their comments have contributed substantively in the evolution of this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
轻松的贞发布了新的文献求助10
1秒前
医学生Mavis完成签到,获得积分10
3秒前
nextconnie完成签到,获得积分10
3秒前
汉堡包应助yyj采纳,获得10
4秒前
zqh740发布了新的文献求助30
5秒前
6秒前
NexusExplorer应助pharmstudent采纳,获得10
7秒前
熊遇蜜完成签到,获得积分10
9秒前
panzer完成签到,获得积分10
10秒前
11秒前
lyt发布了新的文献求助10
12秒前
六月毕业关注了科研通微信公众号
13秒前
petrichor应助程程采纳,获得10
14秒前
圆儿完成签到 ,获得积分10
14秒前
潇洒的灵萱完成签到,获得积分10
14秒前
14秒前
14秒前
Toooo完成签到,获得积分10
15秒前
zqh740完成签到,获得积分10
15秒前
科研通AI5应助thchiang采纳,获得10
15秒前
lizzzzzz完成签到,获得积分10
16秒前
yyj发布了新的文献求助10
16秒前
请和我吃饭完成签到,获得积分10
17秒前
北城发布了新的文献求助10
18秒前
勤恳冰淇淋完成签到 ,获得积分10
19秒前
21秒前
21秒前
清晏完成签到,获得积分10
22秒前
曲书文完成签到,获得积分10
23秒前
李瑞瑞发布了新的文献求助10
23秒前
5123完成签到,获得积分10
23秒前
勤劳落雁发布了新的文献求助10
23秒前
23秒前
26秒前
xuxu完成签到 ,获得积分10
26秒前
27秒前
毛毛虫发布了新的文献求助10
27秒前
科研通AI5应助朴斓采纳,获得10
28秒前
陈彦冰完成签到,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824