数学
分数布朗运动
吸引子
布朗运动
几何布朗运动
数学分析
独特性
随机微分方程
赫斯特指数
随机动力系统
扩散过程
随机过程
先验估计
应用数学
线性系统
创新扩散
线性动力系统
统计
知识管理
计算机科学
作者
Hui Gao,María J. Garrido–Atienza,Björn Schmalfuß
出处
期刊:Siam Journal on Mathematical Analysis
[Society for Industrial and Applied Mathematics]
日期:2014-01-01
卷期号:46 (4): 2281-2309
被引量:59
摘要
The main goal of this article is to prove the existence of a random attractor for a stochastic evolution equation driven by a fractional Brownian motion with Hurst parameter H ∈ (1/2, 1).We would like to emphasize that we do not use the usual cohomology method, consisting of transforming the stochastic equation into a random one, but we deal directly with the stochastic equation.In particular, in order to get adequate a priori estimates of the solution needed for the existence of an absorbing ball, we will introduce stopping times to control the size of the noise.In the first part of this article we shall obtain the existence of a pullback attractor for the nonautonomous dynamical system generated by the pathwise mild solution of an nonlinear infinitedimensional evolution equation with a nontrivial Hölder continuous driving function.In the second part, we shall consider the random setup: stochastic equations having as a driving process a fractional Brownian motion with H ∈ (1/2, 1).Under a smallness condition for that noise we will show the existence and uniqueness of a random attractor for the stochastic evolution equation.
科研通智能强力驱动
Strongly Powered by AbleSci AI