Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration

校准 采样(信号处理) 波长 蒙特卡罗方法 多元统计 钥匙(锁) 线性回归 统计 计算机科学 算法 化学 数学 光学 物理 计算机安全 滤波器(信号处理) 计算机视觉
作者
Hong‐Dong Li,Yi‐Zeng Liang,Qing‐Song Xu,Dongsheng Cao
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:648 (1): 77-84 被引量:1504
标识
DOI:10.1016/j.aca.2009.06.046
摘要

By employing the simple but effective principle ‘survival of the fittest’ on which Darwin's Evolution Theory is based, a novel strategy for selecting an optimal combination of key wavelengths of multi-component spectral data, named competitive adaptive reweighted sampling (CARS), is developed. Key wavelengths are defined as the wavelengths with large absolute coefficients in a multivariate linear regression model, such as partial least squares (PLS). In the present work, the absolute values of regression coefficients of PLS model are used as an index for evaluating the importance of each wavelength. Then, based on the importance level of each wavelength, CARS sequentially selects N subsets of wavelengths from N Monte Carlo (MC) sampling runs in an iterative and competitive manner. In each sampling run, a fixed ratio (e.g. 80%) of samples is first randomly selected to establish a calibration model. Next, based on the regression coefficients, a two-step procedure including exponentially decreasing function (EDF) based enforced wavelength selection and adaptive reweighted sampling (ARS) based competitive wavelength selection is adopted to select the key wavelengths. Finally, cross validation (CV) is applied to choose the subset with the lowest root mean square error of CV (RMSECV). The performance of the proposed procedure is evaluated using one simulated dataset together with one near infrared dataset of two properties. The results reveal an outstanding characteristic of CARS that it can usually locate an optimal combination of some key wavelengths which are interpretable to the chemical property of interest. Additionally, our study shows that better prediction is obtained by CARS when compared to full spectrum PLS modeling, Monte Carlo uninformative variable elimination (MC-UVE) and moving window partial least squares regression (MWPLSR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小爽完成签到,获得积分10
1秒前
现代的书本完成签到,获得积分10
1秒前
鞭霆发布了新的文献求助10
1秒前
风雨霖霖发布了新的文献求助10
2秒前
开心秋天完成签到 ,获得积分10
2秒前
yrw完成签到,获得积分10
2秒前
鲨鱼辣椒完成签到,获得积分10
2秒前
3秒前
蜂蜜完成签到,获得积分10
3秒前
fuguier发布了新的文献求助10
3秒前
熊大完成签到,获得积分10
3秒前
宋叻叻完成签到,获得积分10
3秒前
鲤鱼小熊猫完成签到,获得积分10
4秒前
4秒前
快乐白晴关注了科研通微信公众号
4秒前
5秒前
xxx_oo完成签到,获得积分10
5秒前
5秒前
聪明的依白完成签到 ,获得积分10
5秒前
zzwwjj完成签到,获得积分10
5秒前
6秒前
DezhaoWang完成签到,获得积分10
6秒前
jane完成签到 ,获得积分10
7秒前
YangSY发布了新的文献求助10
7秒前
想和你陈成阿狗完成签到,获得积分10
7秒前
7秒前
在水一方应助飞翔的鸣采纳,获得10
8秒前
feilei完成签到,获得积分10
8秒前
8秒前
DD完成签到,获得积分10
8秒前
顾瞻完成签到,获得积分10
9秒前
louis发布了新的文献求助10
9秒前
guozizi完成签到,获得积分10
9秒前
大蛋完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
刚果王子完成签到,获得积分10
11秒前
galioo3000发布了新的文献求助10
11秒前
Xuz完成签到 ,获得积分10
11秒前
11秒前
科研通AI2S应助俊杰采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427125
求助须知:如何正确求助?哪些是违规求助? 4540611
关于积分的说明 14173188
捐赠科研通 4458636
什么是DOI,文献DOI怎么找? 2445081
邀请新用户注册赠送积分活动 1436133
关于科研通互助平台的介绍 1413667