已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantum wells formed in transition-metal dichalcogenide nanosheet-superlattices: stability and electronic structures from first principles

纳米片 超晶格 量子阱 材料科学 过渡金属 带隙 电子能带结构 电子结构 结合能 密度泛函理论 凝聚态物理 化学物理 光电子学 纳米技术 化学 计算化学 原子物理学 光学 物理 激光器 生物化学 催化作用
作者
Xiangying Su,Ruizhi Zhang,Chunlan Guo,Meng Guo,Zhaoyu Ren
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:16 (4): 1393-1398 被引量:25
标识
DOI:10.1039/c3cp54080d
摘要

The possibility of forming quantum wells (QWs) in transition-metal dichalcogenide nanosheet assembled superlattices (SLs) was investigated by using the first principles calculations. The interfacial binding energies and electronic structures of MoS2/MX2 (MX2 = MoSe2, WS2, and WSe2) SLs were calculated. The interfacial binding energies show that all the SLs are stable, and the most stable atomic configuration is that where M atoms are located right above S atoms. By calculating the band offsets in the SLs, it was found that a QW with a depth of 0.17 eV can be formed in the MoS2 layer in MoS2/WSe2 SLs. The calculated band structure shows that this SL has an indirect band gap due to the tensile strained state of the MoS2 layer. The charge transfer between the two layers is very small, which is in favor of the QWs' formation. In particular, the depth of the QW in the SLs can be adjusted by strain engineering, which can be attributed to the different strain dependencies of the two materials' band gaps. These findings will guide the choice of future nanosheet assembled SLs to work on and suggest a new route to facilitate the design of QW based optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ok完成签到,获得积分10
刚刚
MrTStar完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
cherrychou完成签到,获得积分10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
浮浮世世应助科研通管家采纳,获得30
4秒前
打打应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
浮浮世世应助科研通管家采纳,获得30
5秒前
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
风中问晴发布了新的文献求助10
6秒前
迅速泽洋发布了新的文献求助10
6秒前
7秒前
CXS发布了新的文献求助10
7秒前
9秒前
秀丽的短靴完成签到,获得积分10
9秒前
所所应助吉良吉影采纳,获得10
11秒前
samantha817完成签到,获得积分10
11秒前
JamesPei应助长情火龙果采纳,获得10
12秒前
13秒前
14秒前
唠叨的无敌完成签到 ,获得积分20
14秒前
氢氧化钠Li完成签到,获得积分10
15秒前
朱庆柯发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422